yesj1234's picture
Upload folder using huggingface_hub
13695b0
metadata
language:
  - ko
  - en
base_model: facebook/mbart-large-50-many-to-many-mmt
tags:
  - generated_from_trainer
metrics:
  - bleu
model-index:
  - name: ko-en_mbartLarge_exp20p_linear
    results: []

ko-en_mbartLarge_exp20p_linear

This model is a fine-tuned version of facebook/mbart-large-50-many-to-many-mmt on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1514
  • Bleu: 29.2703
  • Gen Len: 18.512

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 40

Training results

Training Loss Epoch Step Bleu Gen Len Validation Loss
1.3977 0.46 4000 22.7153 18.7135 1.3720
1.2824 0.93 8000 24.8579 18.7821 1.2633
1.1989 1.39 12000 26.2533 18.7975 1.2069
1.1534 1.86 16000 26.1503 19.2075 1.1907
1.0245 2.32 20000 27.8764 18.6046 1.1464
1.0186 2.78 24000 28.4585 18.6731 1.1286
0.9245 3.25 28000 1.1264 28.4834 18.5428
0.9343 3.71 32000 1.1182 28.8235 18.7833
0.8215 4.18 36000 1.1331 28.6134 18.5656
0.8456 4.64 40000 1.1203 28.7324 18.459
0.7437 5.11 44000 1.1458 28.7297 18.7835
0.7829 5.57 48000 1.1367 28.8328 18.6052
0.7434 6.03 52000 1.1697 28.2106 18.4871
0.7153 6.5 56000 1.1771 28.1455 18.7413
0.6996 6.96 60000 1.1514 29.2694 18.5162
0.6336 7.43 64000 1.2213 28.1465 18.5439
0.7218 7.89 68000 1.1835 28.2245 18.5246
0.5934 8.35 72000 1.2387 28.3836 18.6717
0.5723 8.82 76000 1.2323 28.5925 18.5566

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.14.1