SentenceTransformer based on TaylorAI/bge-micro-v2
This is a sentence-transformers model finetuned from TaylorAI/bge-micro-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: TaylorAI/bge-micro-v2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("training")
# Run inference
sentences = [
'Carbuncle, unspecified',
'Cutaneous abscess, furuncle and carbuncle, unspecified',
'Furuncle of neck',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 160,000 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 4 tokens
- mean: 15.92 tokens
- max: 47 tokens
- min: 4 tokens
- mean: 15.81 tokens
- max: 41 tokens
- min: 3 tokens
- mean: 15.75 tokens
- max: 45 tokens
- Samples:
anchor positive negative Sudden visual loss, right eye
Sudden visual loss
Visual distortions of shape and size
Drug/chem diab with mild nonp rtnop without mclr edema, unsp Drug or chemical
Drug/chem diab with mod nonp rtnop with macular edema, bi Drug or
Hypostatic pneumonia, unspecified organism
Bronchiectasis with (acute) exacerbation
Bronchiectasis
Gestatnl htn w/o significant proteinuria, second trimester
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16max_steps
: 10000
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3.0max_steps
: 10000lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.005 | 50 | 3.9819 |
0.01 | 100 | 3.8181 |
0.015 | 150 | 3.7244 |
0.02 | 200 | 3.6362 |
0.025 | 250 | 3.5459 |
0.03 | 300 | 3.4653 |
0.035 | 350 | 3.4066 |
0.04 | 400 | 3.3441 |
0.045 | 450 | 3.3497 |
0.05 | 500 | 3.2625 |
0.055 | 550 | 3.1359 |
0.06 | 600 | 3.1542 |
0.065 | 650 | 3.1528 |
0.07 | 700 | 3.1634 |
0.075 | 750 | 3.0737 |
0.08 | 800 | 3.1022 |
0.085 | 850 | 3.0288 |
0.09 | 900 | 2.9434 |
0.095 | 950 | 2.9014 |
0.1 | 1000 | 3.0412 |
0.105 | 1050 | 2.9844 |
0.11 | 1100 | 2.845 |
0.115 | 1150 | 2.9053 |
0.12 | 1200 | 2.8447 |
0.125 | 1250 | 2.8222 |
0.13 | 1300 | 2.8545 |
0.135 | 1350 | 2.7114 |
0.14 | 1400 | 2.7586 |
0.145 | 1450 | 2.6997 |
0.15 | 1500 | 2.5484 |
0.155 | 1550 | 2.7853 |
0.16 | 1600 | 2.6711 |
0.165 | 1650 | 2.7364 |
0.17 | 1700 | 2.8237 |
0.175 | 1750 | 2.737 |
0.18 | 1800 | 2.7059 |
0.185 | 1850 | 2.6577 |
0.19 | 1900 | 2.777 |
0.195 | 1950 | 2.7369 |
0.2 | 2000 | 2.6317 |
0.205 | 2050 | 2.6678 |
0.21 | 2100 | 2.6889 |
0.215 | 2150 | 2.5734 |
0.22 | 2200 | 2.7214 |
0.225 | 2250 | 2.5059 |
0.23 | 2300 | 2.623 |
0.235 | 2350 | 2.6761 |
0.24 | 2400 | 2.5663 |
0.245 | 2450 | 2.6678 |
0.25 | 2500 | 2.5856 |
0.255 | 2550 | 2.5436 |
0.26 | 2600 | 2.6359 |
0.265 | 2650 | 2.6266 |
0.27 | 2700 | 2.5698 |
0.275 | 2750 | 2.5611 |
0.28 | 2800 | 2.6306 |
0.285 | 2850 | 2.658 |
0.29 | 2900 | 2.5878 |
0.295 | 2950 | 2.553 |
0.3 | 3000 | 2.5295 |
0.305 | 3050 | 2.5211 |
0.31 | 3100 | 2.6489 |
0.315 | 3150 | 2.6131 |
0.32 | 3200 | 2.7298 |
0.325 | 3250 | 2.5931 |
0.33 | 3300 | 2.5927 |
0.335 | 3350 | 2.5403 |
0.34 | 3400 | 2.4497 |
0.345 | 3450 | 2.6764 |
0.35 | 3500 | 2.5673 |
0.355 | 3550 | 2.6134 |
0.36 | 3600 | 2.6298 |
0.365 | 3650 | 2.5747 |
0.37 | 3700 | 2.6245 |
0.375 | 3750 | 2.5275 |
0.38 | 3800 | 2.5541 |
0.385 | 3850 | 2.5469 |
0.39 | 3900 | 2.452 |
0.395 | 3950 | 2.483 |
0.4 | 4000 | 2.5592 |
0.405 | 4050 | 2.4209 |
0.41 | 4100 | 2.6014 |
0.415 | 4150 | 2.3952 |
0.42 | 4200 | 2.5131 |
0.425 | 4250 | 2.4455 |
0.43 | 4300 | 2.5441 |
0.435 | 4350 | 2.5412 |
0.44 | 4400 | 2.3887 |
0.445 | 4450 | 2.5183 |
0.45 | 4500 | 2.4578 |
0.455 | 4550 | 2.5733 |
0.46 | 4600 | 2.6645 |
0.465 | 4650 | 2.5156 |
0.47 | 4700 | 2.4689 |
0.475 | 4750 | 2.4995 |
0.48 | 4800 | 2.6219 |
0.485 | 4850 | 2.605 |
0.49 | 4900 | 2.4358 |
0.495 | 4950 | 2.6028 |
0.5 | 5000 | 2.5858 |
0.505 | 5050 | 2.3894 |
0.51 | 5100 | 2.6398 |
0.515 | 5150 | 2.4805 |
0.52 | 5200 | 2.5322 |
0.525 | 5250 | 2.4 |
0.53 | 5300 | 2.4541 |
0.535 | 5350 | 2.5067 |
0.54 | 5400 | 2.5244 |
0.545 | 5450 | 2.5514 |
0.55 | 5500 | 2.4608 |
0.555 | 5550 | 2.5884 |
0.56 | 5600 | 2.4291 |
0.565 | 5650 | 2.6395 |
0.57 | 5700 | 2.3873 |
0.575 | 5750 | 2.652 |
0.58 | 5800 | 2.5328 |
0.585 | 5850 | 2.5713 |
0.59 | 5900 | 2.4961 |
0.595 | 5950 | 2.4438 |
0.6 | 6000 | 2.5537 |
0.605 | 6050 | 2.6323 |
0.61 | 6100 | 2.6427 |
0.615 | 6150 | 2.5648 |
0.62 | 6200 | 2.4444 |
0.625 | 6250 | 2.6298 |
0.63 | 6300 | 2.583 |
0.635 | 6350 | 2.6873 |
0.64 | 6400 | 2.5556 |
0.645 | 6450 | 2.5652 |
0.65 | 6500 | 2.618 |
0.655 | 6550 | 2.4977 |
0.66 | 6600 | 2.5805 |
0.665 | 6650 | 2.4989 |
0.67 | 6700 | 2.5527 |
0.675 | 6750 | 2.5616 |
0.68 | 6800 | 2.5378 |
0.685 | 6850 | 2.5159 |
0.69 | 6900 | 2.6366 |
0.695 | 6950 | 2.5066 |
0.7 | 7000 | 2.498 |
0.705 | 7050 | 2.5416 |
0.71 | 7100 | 2.5362 |
0.715 | 7150 | 2.5541 |
0.72 | 7200 | 2.5598 |
0.725 | 7250 | 2.4584 |
0.73 | 7300 | 2.6006 |
0.735 | 7350 | 2.5072 |
0.74 | 7400 | 2.4681 |
0.745 | 7450 | 2.4808 |
0.75 | 7500 | 2.5695 |
0.755 | 7550 | 2.5131 |
0.76 | 7600 | 2.5227 |
0.765 | 7650 | 2.5553 |
0.77 | 7700 | 2.4966 |
0.775 | 7750 | 2.4811 |
0.78 | 7800 | 2.5081 |
0.785 | 7850 | 2.5916 |
0.79 | 7900 | 2.4911 |
0.795 | 7950 | 2.5778 |
0.8 | 8000 | 2.5111 |
0.805 | 8050 | 2.5094 |
0.81 | 8100 | 2.5456 |
0.815 | 8150 | 2.5445 |
0.82 | 8200 | 2.5531 |
0.825 | 8250 | 2.6358 |
0.83 | 8300 | 2.5247 |
0.835 | 8350 | 2.4117 |
0.84 | 8400 | 2.5442 |
0.845 | 8450 | 2.537 |
0.85 | 8500 | 2.4553 |
0.855 | 8550 | 2.6114 |
0.86 | 8600 | 2.4397 |
0.865 | 8650 | 2.5667 |
0.87 | 8700 | 2.5281 |
0.875 | 8750 | 2.4894 |
0.88 | 8800 | 2.5723 |
0.885 | 8850 | 2.5952 |
0.89 | 8900 | 2.4053 |
0.895 | 8950 | 2.4827 |
0.9 | 9000 | 2.5784 |
0.905 | 9050 | 2.4545 |
0.91 | 9100 | 2.527 |
0.915 | 9150 | 2.5998 |
0.92 | 9200 | 2.4528 |
0.925 | 9250 | 2.5195 |
0.93 | 9300 | 2.5508 |
0.935 | 9350 | 2.5952 |
0.94 | 9400 | 2.607 |
0.945 | 9450 | 2.5086 |
0.95 | 9500 | 2.4972 |
0.955 | 9550 | 2.4919 |
0.96 | 9600 | 2.5147 |
0.965 | 9650 | 2.4523 |
0.97 | 9700 | 2.6027 |
0.975 | 9750 | 2.4286 |
0.98 | 9800 | 2.5617 |
0.985 | 9850 | 2.4994 |
0.99 | 9900 | 2.6527 |
0.995 | 9950 | 2.538 |
1.0 | 10000 | 2.4506 |
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.1
- Transformers: 4.44.2
- PyTorch: 2.4.0
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for yhyhy3/training
Base model
TaylorAI/bge-micro-v2