{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc6dd0adbd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc6dd0b0bc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685111488485314522, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA0//bPq6wDzyB/A4/0//bPq6wDzyB/A4/0//bPq6wDzyB/A4/0//bPq6wDzyB/A4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfK7KvyV7mL/+d7++fW+gPl2upL7Por+963bEP+msgT+ypVC+AfCdv0fF27/wP6o/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADT/9s+rrAPPIH8Dj8Ua8A9lQl0ud8Ljz3T/9s+rrAPPIH8Dj8Ua8A9lQl0ud8Ljz3T/9s+rrAPPIH8Dj8Ua8A9lQl0ud8Ljz3T/9s+rrAPPIH8Dj8Ua8A9lQl0ud8Ljz2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42968616 0.00877015 0.5585404 ]\n [0.42968616 0.00877015 0.5585404 ]\n [0.42968616 0.00877015 0.5585404 ]\n [0.42968616 0.00877015 0.5585404 ]]", "desired_goal": "[[-1.5834498 -1.1912581 -0.37396234]\n [ 0.3133506 -0.3216428 -0.09357225]\n [ 1.5348791 1.0130893 -0.20375708]\n [-1.2338868 -1.7169579 1.3300762 ]]", "observation": "[[ 4.2968616e-01 8.7701511e-03 5.5854040e-01 9.3954235e-02\n -2.3273223e-04 6.9846861e-02]\n [ 4.2968616e-01 8.7701511e-03 5.5854040e-01 9.3954235e-02\n -2.3273223e-04 6.9846861e-02]\n [ 4.2968616e-01 8.7701511e-03 5.5854040e-01 9.3954235e-02\n -2.3273223e-04 6.9846861e-02]\n [ 4.2968616e-01 8.7701511e-03 5.5854040e-01 9.3954235e-02\n -2.3273223e-04 6.9846861e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlmcDPv2pAD4fKNo9my5uvFs4Db6rBaA96cy2PQZ3Cz4HCD8+ObEEvjt1WT3sn30+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.12832484 0.12564845 0.10652184]\n [-0.01453748 -0.13791029 0.07813581]\n [ 0.08925802 0.13619623 0.18655406]\n [-0.1295823 0.05309032 0.24768037]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4L2jxoSY57+UhpRSlIwBbJRLMowBdJRHQLiJRvhqCYl1fZQoaAZoCWgPQwjb+X5qvHTdv5SGlFKUaBVLMmgWR0C4iR4sNDtxdX2UKGgGaAloD0MIXwzlRLvK97+UhpRSlGgVSzJoFkdAuIj9TJhfB3V9lChoBmgJaA9DCOylKQKcXvC/lIaUUpRoFUsyaBZHQLiI3KyOaOR1fZQoaAZoCWgPQwhagSGrW73kv5SGlFKUaBVLMmgWR0C4ijpEc81XdX2UKGgGaAloD0MIAmcpWU4C/7+UhpRSlGgVSzJoFkdAuIoR9y925nV9lChoBmgJaA9DCEEqxY7GIfi/lIaUUpRoFUsyaBZHQLiJ8UOd5IJ1fZQoaAZoCWgPQwgEH4MVp9rrv5SGlFKUaBVLMmgWR0C4idC4jKPodX2UKGgGaAloD0MIqDrkZrhB87+UhpRSlGgVSzJoFkdAuIs1OwgTy3V9lChoBmgJaA9DCKnBNAwfkfK/lIaUUpRoFUsyaBZHQLiLDPqcEvF1fZQoaAZoCWgPQwjs3/WZs77lv5SGlFKUaBVLMmgWR0C4iuw7HQyAdX2UKGgGaAloD0MInE6y1eWU7b+UhpRSlGgVSzJoFkdAuIrLmOlwcnV9lChoBmgJaA9DCPMhqBq9GuS/lIaUUpRoFUsyaBZHQLiML2EkB0Z1fZQoaAZoCWgPQwjAJmvUQ/Twv5SGlFKUaBVLMmgWR0C4jAbx7RfGdX2UKGgGaAloD0MIZ0P+mUE8+L+UhpRSlGgVSzJoFkdAuIvmCz1K5HV9lChoBmgJaA9DCLGIYYcxafa/lIaUUpRoFUsyaBZHQLiLxVx0dR11fZQoaAZoCWgPQwgoLVxWYXPxv5SGlFKUaBVLMmgWR0C4jThC2MKkdX2UKGgGaAloD0MIw4L7AQ8M97+UhpRSlGgVSzJoFkdAuI0P2wmmcnV9lChoBmgJaA9DCI2Y2ecxyuW/lIaUUpRoFUsyaBZHQLiM7vL5h0B1fZQoaAZoCWgPQwjDLLRzmoXwv5SGlFKUaBVLMmgWR0C4jM6IacZtdX2UKGgGaAloD0MIuamB5nNu/b+UhpRSlGgVSzJoFkdAuI3T+85CGHV9lChoBmgJaA9DCPYn8bkTrPu/lIaUUpRoFUsyaBZHQLiNqv3ai9J1fZQoaAZoCWgPQwheL00R4DTxv5SGlFKUaBVLMmgWR0C4jYmc8TzvdX2UKGgGaAloD0MIaEEo7+Po8b+UhpRSlGgVSzJoFkdAuI1oieNDMXV9lChoBmgJaA9DCJIiMqziDf6/lIaUUpRoFUsyaBZHQLiOUPJ7sv91fZQoaAZoCWgPQwjJrUm3JTL4v5SGlFKUaBVLMmgWR0C4jifqTr3TdX2UKGgGaAloD0MImkLnNXbJ8b+UhpRSlGgVSzJoFkdAuI4GdvsJIHV9lChoBmgJaA9DCOP/jqhQPQDAlIaUUpRoFUsyaBZHQLiN5TDO1OV1fZQoaAZoCWgPQwig+3Jmu4Lwv5SGlFKUaBVLMmgWR0C4jtp9uxbCdX2UKGgGaAloD0MIuY5xxcXR97+UhpRSlGgVSzJoFkdAuI6x3wCr93V9lChoBmgJaA9DCMr8o2/S9PK/lIaUUpRoFUsyaBZHQLiOkJ4jbBZ1fZQoaAZoCWgPQwhJgQUwZeD4v5SGlFKUaBVLMmgWR0C4jm9wvQF+dX2UKGgGaAloD0MI4uR+h6KA+b+UhpRSlGgVSzJoFkdAuI9tDWsijnV9lChoBmgJaA9DCHkCYadYNei/lIaUUpRoFUsyaBZHQLiPQ/5Lytp1fZQoaAZoCWgPQwjZ0M3+QLn1v5SGlFKUaBVLMmgWR0C4jyLo8p1BdX2UKGgGaAloD0MIK2owDcPHA8CUhpRSlGgVSzJoFkdAuI8CIgvDg3V9lChoBmgJaA9DCHXIzXADvvW/lIaUUpRoFUsyaBZHQLiP8I91U2l1fZQoaAZoCWgPQwhiLqnabsL7v5SGlFKUaBVLMmgWR0C4j8ebd8ArdX2UKGgGaAloD0MI9SwI5X08AsCUhpRSlGgVSzJoFkdAuI+mNT987nV9lChoBmgJaA9DCOEnDqDfd/e/lIaUUpRoFUsyaBZHQLiPhQd0aIh1fZQoaAZoCWgPQwiXOsjrwWTxv5SGlFKUaBVLMmgWR0C4kHDKkl/pdX2UKGgGaAloD0MImntI+N7/AMCUhpRSlGgVSzJoFkdAuJBHsu3+dnV9lChoBmgJaA9DCLFPAMXIEvm/lIaUUpRoFUsyaBZHQLiQJkxREWt1fZQoaAZoCWgPQwiGcw0zNH4AwJSGlFKUaBVLMmgWR0C4kAUMb3oLdX2UKGgGaAloD0MIW0I+6Nns97+UhpRSlGgVSzJoFkdAuJDuekHlfnV9lChoBmgJaA9DCEOqKF5lbfO/lIaUUpRoFUsyaBZHQLiQxVuJk5J1fZQoaAZoCWgPQwiJmujzUQb7v5SGlFKUaBVLMmgWR0C4kKQjyFwldX2UKGgGaAloD0MIQj9Tr1uE+L+UhpRSlGgVSzJoFkdAuJCDBO58SnV9lChoBmgJaA9DCLq8OVyr/fW/lIaUUpRoFUsyaBZHQLiRY4+r2g51fZQoaAZoCWgPQwgVjErqBHTxv5SGlFKUaBVLMmgWR0C4kTqwpvxZdX2UKGgGaAloD0MIW1t4Xio28r+UhpRSlGgVSzJoFkdAuJEZSaVlgHV9lChoBmgJaA9DCG1vtyQH7PW/lIaUUpRoFUsyaBZHQLiQ+BlcyFh1fZQoaAZoCWgPQwhIowIn20D5v5SGlFKUaBVLMmgWR0C4kfIKIBRydX2UKGgGaAloD0MIoYUEjC5v/b+UhpRSlGgVSzJoFkdAuJHJLOAy23V9lChoBmgJaA9DCDI89rNYivq/lIaUUpRoFUsyaBZHQLiRp/cFhXt1fZQoaAZoCWgPQwj7Xdiarfzzv5SGlFKUaBVLMmgWR0C4kYbnHNordX2UKGgGaAloD0MIJgFqatla9b+UhpRSlGgVSzJoFkdAuJKGq6vq1XV9lChoBmgJaA9DCF8NUBpqlPS/lIaUUpRoFUsyaBZHQLiSXazNUwV1fZQoaAZoCWgPQwglzoqoiV4EwJSGlFKUaBVLMmgWR0C4kjy2x6fKdX2UKGgGaAloD0MIRyBe1y/Y3L+UhpRSlGgVSzJoFkdAuJIbjghr33V9lChoBmgJaA9DCAFPWrisgvK/lIaUUpRoFUsyaBZHQLiTDjQzDXR1fZQoaAZoCWgPQwj8UGnEzD7hv5SGlFKUaBVLMmgWR0C4kuVFpfx+dX2UKGgGaAloD0MISREZVvEmAMCUhpRSlGgVSzJoFkdAuJLD/6wdKnV9lChoBmgJaA9DCHnou1tZIua/lIaUUpRoFUsyaBZHQLiSouNgjQl1fZQoaAZoCWgPQwhnQ/6ZQfzqv5SGlFKUaBVLMmgWR0C4k5CZrpJPdX2UKGgGaAloD0MIS3hCrz8J/L+UhpRSlGgVSzJoFkdAuJNnnvDxb3V9lChoBmgJaA9DCOW2fY/6K/K/lIaUUpRoFUsyaBZHQLiTRkzXSSh1fZQoaAZoCWgPQwgGEhQ/xhzwv5SGlFKUaBVLMmgWR0C4kyUT6BRRdX2UKGgGaAloD0MIfh6jPPNy6b+UhpRSlGgVSzJoFkdAuJQZqKxcFHV9lChoBmgJaA9DCLnH0ocuaPa/lIaUUpRoFUsyaBZHQLiT8MKTjed1fZQoaAZoCWgPQwidZKvLKYHsv5SGlFKUaBVLMmgWR0C4k8+AiFCcdX2UKGgGaAloD0MI9l0R/G8l77+UhpRSlGgVSzJoFkdAuJOugGr0a3V9lChoBmgJaA9DCA3jbhCtFfG/lIaUUpRoFUsyaBZHQLiUpuJ1q351fZQoaAZoCWgPQwjJ5qp5jgj2v5SGlFKUaBVLMmgWR0C4lH4PK+zudX2UKGgGaAloD0MIbmx2pPrO47+UhpRSlGgVSzJoFkdAuJRc0ygwoXV9lChoBmgJaA9DCNsV+mAZW/i/lIaUUpRoFUsyaBZHQLiUO8UEgW91fZQoaAZoCWgPQwi8r8qFyr/nv5SGlFKUaBVLMmgWR0C4lTWq94/vdX2UKGgGaAloD0MIq3XicrwC6b+UhpRSlGgVSzJoFkdAuJUM4Otnw3V9lChoBmgJaA9DCO8AT1q4LO6/lIaUUpRoFUsyaBZHQLiU69C/oJR1fZQoaAZoCWgPQwiCdLFppRD3v5SGlFKUaBVLMmgWR0C4lMq5TZQIdX2UKGgGaAloD0MIYAMixJVz+r+UhpRSlGgVSzJoFkdAuJW7E5yU93V9lChoBmgJaA9DCH5xqUpbHPS/lIaUUpRoFUsyaBZHQLiVkmqYJE91fZQoaAZoCWgPQwiuRnalZWT6v5SGlFKUaBVLMmgWR0C4lXGEPDpDdX2UKGgGaAloD0MIUcB2MGIf9b+UhpRSlGgVSzJoFkdAuJVQlZ5iVnV9lChoBmgJaA9DCDIfEOhM2uy/lIaUUpRoFUsyaBZHQLiWU4dp7C11fZQoaAZoCWgPQwgKoYMu4VD3v5SGlFKUaBVLMmgWR0C4liqcqe9SdX2UKGgGaAloD0MIJUBNLVtr5L+UhpRSlGgVSzJoFkdAuJYJWilBQnV9lChoBmgJaA9DCGxDxTh/k/y/lIaUUpRoFUsyaBZHQLiV6I+GGmF1fZQoaAZoCWgPQwipvvOLEvTqv5SGlFKUaBVLMmgWR0C4ltie7L+xdX2UKGgGaAloD0MIu38sRIfAAcCUhpRSlGgVSzJoFkdAuJavrxAjZHV9lChoBmgJaA9DCJqy0w/qYvK/lIaUUpRoFUsyaBZHQLiWjmfoRqZ1fZQoaAZoCWgPQwiYUSy3tBruv5SGlFKUaBVLMmgWR0C4lm04BFNMdX2UKGgGaAloD0MI7+L9uP3y57+UhpRSlGgVSzJoFkdAuJeHZ39rGnV9lChoBmgJaA9DCLIubqMBvP6/lIaUUpRoFUsyaBZHQLiXX4rSVnp1fZQoaAZoCWgPQwgB4Niz53Lwv5SGlFKUaBVLMmgWR0C4lz6sp5NXdX2UKGgGaAloD0MIOxvyzwzi97+UhpRSlGgVSzJoFkdAuJcdvze41HV9lChoBmgJaA9DCORp+YGrfPa/lIaUUpRoFUsyaBZHQLiYjXrMTvl1fZQoaAZoCWgPQwgv98lRgKjxv5SGlFKUaBVLMmgWR0C4mGUT6BRRdX2UKGgGaAloD0MIRl9BmrFo87+UhpRSlGgVSzJoFkdAuJhE8+zMR3V9lChoBmgJaA9DCJkprb8lgPq/lIaUUpRoFUsyaBZHQLiYJDlo11p1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}} |