Financial Sentiment Analysis in Chinese

This is a fine-tuned version of FinBERT, based on bert-base-chinese, on a private dataset (around ~8k analyst report sentences) for sentiment analysis.

  • Test Accuracy = 0.88
  • Test Macro F1 = 0.87
  • Labels: 0 -> Neutral; 1 -> Positive; 2 -> Negative

Usage

from transformers import TextClassificationPipeline
from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer
from transformers import BertTokenizerFast
model_path="./fin_sentiment_bert_zh/"
new_model = AutoModelForSequenceClassification.from_pretrained(model_path,output_attentions=True)
tokenizer = BertTokenizerFast.from_pretrained(model_path)
PipelineInterface = TextClassificationPipeline(model=new_model, tokenizer=tokenizer, return_all_scores=True)
label = PipelineInterface("此外宁德时代上半年实现出口约2GWh,同比增加200%+。") 
print(label)
[[{'label': 'LABEL_0', 'score': 0.0007030126871541142}, {'label': 'LABEL_1', 'score': 0.9989339709281921}, {'label': 'LABEL_2', 'score': 0.000363016442861408}]]
Downloads last month
901
Safetensors
Model size
102M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yiyanghkust/finbert-tone-chinese

Finetunes
1 model