SentenceTransformer based on intfloat/multilingual-e5-base
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-base on the rozetka_positive_pairs dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Dot Product
- Training Dataset:
- rozetka_positive_pairs
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
RZTKSentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("rztk/multilingual-e5-base-matryoshka2d-mnr-3")
# Run inference
sentences = [
'query: мебель для кухни',
'passage: Кухня Эко модуль Вытяжка 600 Эверест Ясень Шимо Светлый 60х30х28 см',
'passage: Ключниці кишенькові Karya Гарантія 14 днів Для кого Для жінок Колір Червоний Матеріал Шкіра Країна реєстрації бренда Туреччина Країна-виробник товару Туреччина',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
rozetka_positive_pairs
- Dataset: rozetka_positive_pairs
- Size: 58,620,066 training samples
- Columns:
query
andtext
- Approximate statistics based on the first 1000 samples:
query text type string string details - min: 6 tokens
- mean: 11.27 tokens
- max: 30 tokens
- min: 11 tokens
- mean: 59.47 tokens
- max: 512 tokens
- Samples:
query text query: xsiomi 9c скло
passage: Защитные стекла Назначение Для мобильных телефонов Цвет Черный Теги Теги Наличие рамки C рамкой Форм-фактор Плоское Клеевой слой По всей поверхности
query: xsiomi 9c скло
passage: Захисне скло Призначення Для мобільних телефонів Колір Чорний Теги Теги Наявність рамки З рамкою Форм-фактор Плоске Клейовий шар По всій поверхні
query: xsiomi 9c скло
passage: Захисне скло Glass Full Glue для Xiaomi Redmi 9A/9C/10A (Чорний)
- Loss:
sentence_transformers_training.model.matryoshka2d_loss.RZTKMatryoshka2dLoss
with these parameters:{ "loss": "RZTKMultipleNegativesRankingLoss", "n_layers_per_step": 1, "last_layer_weight": 1.0, "prior_layers_weight": 1.0, "kl_div_weight": 1.0, "kl_temperature": 0.3, "matryoshka_dims": [ 768, 512, 256, 128 ], "matryoshka_weights": [ 1, 1, 1, 1 ], "n_dims_per_step": 1 }
Evaluation Dataset
rozetka_positive_pairs
- Dataset: rozetka_positive_pairs
- Size: 1,903,728 evaluation samples
- Columns:
query
andtext
- Approximate statistics based on the first 1000 samples:
query text type string string details - min: 6 tokens
- mean: 8.36 tokens
- max: 16 tokens
- min: 8 tokens
- mean: 45.68 tokens
- max: 365 tokens
- Samples:
query text query: создаем нейронную сеть
passage: Створюємо нейронну мережу
query: создаем нейронную сеть
passage: Создаем нейронную сеть (1666498)
query: создаем нейронную сеть
passage: Научная и техническая литература Переплет Мягкий
- Loss:
sentence_transformers_training.model.matryoshka2d_loss.RZTKMatryoshka2dLoss
with these parameters:{ "loss": "RZTKMultipleNegativesRankingLoss", "n_layers_per_step": 1, "last_layer_weight": 1.0, "prior_layers_weight": 1.0, "kl_div_weight": 1.0, "kl_temperature": 0.3, "matryoshka_dims": [ 768, 512, 256, 128 ], "matryoshka_weights": [ 1, 1, 1, 1 ], "n_dims_per_step": 1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 88per_device_eval_batch_size
: 88learning_rate
: 2e-05num_train_epochs
: 1.0warmup_ratio
: 0.1bf16
: Truebf16_full_eval
: Truetf32
: Truedataloader_num_workers
: 8load_best_model_at_end
: Trueoptim
: adafactorpush_to_hub
: Truehub_model_id
: rztk/multilingual-e5-base-matryoshka2d-mnr-3hub_private_repo
: Trueprompts
: {'query': 'query: ', 'text': 'passage: '}batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 88per_device_eval_batch_size
: 88per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1.0max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Truefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 8dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adafactoroptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: rztk/multilingual-e5-base-matryoshka2d-mnr-3hub_strategy
: every_savehub_private_repo
: Truehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: {'query': 'query: ', 'text': 'passage: '}batch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalddp_static_graph
: Falseddp_comm_hook
: bf16gradient_as_bucket_view
: Falsenum_proc
: 30
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0050 | 833 | 4.8404 | - |
0.0100 | 1666 | 4.6439 | - |
0.0150 | 2499 | 4.2238 | - |
0.0200 | 3332 | 3.5445 | - |
0.0250 | 4165 | 2.7514 | - |
0.0300 | 4998 | 2.4037 | - |
0.0350 | 5831 | 2.1916 | - |
0.0400 | 6664 | 2.0938 | - |
0.0450 | 7497 | 1.9268 | - |
0.0500 | 8330 | 1.8671 | - |
0.0550 | 9163 | 1.7069 | - |
0.0600 | 9996 | 1.6419 | - |
0.0650 | 10829 | 1.55 | - |
0.0700 | 11662 | 1.5483 | - |
0.0750 | 12495 | 1.5419 | - |
0.0800 | 13328 | 1.3582 | - |
0.0850 | 14161 | 1.3537 | - |
0.0900 | 14994 | 1.3067 | - |
0.0950 | 15827 | 1.2128 | - |
0.1000 | 16654 | - | 1.0107 |
0.1000 | 16660 | 1.2248 | - |
0.1050 | 17493 | 1.1565 | - |
0.1100 | 18326 | 1.1351 | - |
0.1150 | 19159 | 1.0808 | - |
0.1200 | 19992 | 1.0561 | - |
0.1250 | 20825 | 1.078 | - |
0.1301 | 21658 | 1.1413 | - |
0.1351 | 22491 | 1.0446 | - |
0.1401 | 23324 | 0.9986 | - |
0.1451 | 24157 | 0.9668 | - |
0.1501 | 24990 | 0.9753 | - |
0.1551 | 25823 | 1.0031 | - |
0.1601 | 26656 | 0.9688 | - |
0.1651 | 27489 | 0.9262 | - |
0.1701 | 28322 | 0.9702 | - |
0.1751 | 29155 | 0.9082 | - |
0.1801 | 29988 | 0.9264 | - |
0.1851 | 30821 | 0.8526 | - |
0.1901 | 31654 | 0.9667 | - |
0.1951 | 32487 | 0.9421 | - |
0.2000 | 33308 | - | 0.6416 |
0.2001 | 33320 | 0.9216 | - |
0.2051 | 34153 | 0.95 | - |
0.2101 | 34986 | 0.8895 | - |
0.2151 | 35819 | 0.8349 | - |
0.2201 | 36652 | 0.8628 | - |
0.2251 | 37485 | 0.8729 | - |
0.2301 | 38318 | 0.9285 | - |
0.2351 | 39151 | 0.8718 | - |
0.2401 | 39984 | 0.8792 | - |
0.2451 | 40817 | 0.8852 | - |
0.2501 | 41650 | 0.877 | - |
0.2551 | 42483 | 0.8325 | - |
0.2601 | 43316 | 0.8446 | - |
0.2651 | 44149 | 0.812 | - |
0.2701 | 44982 | 0.8246 | - |
0.2751 | 45815 | 0.8086 | - |
0.2801 | 46648 | 0.8553 | - |
0.2851 | 47481 | 0.8506 | - |
0.2901 | 48314 | 0.834 | - |
0.2951 | 49147 | 0.8313 | - |
0.3000 | 49962 | - | 0.5377 |
0.3001 | 49980 | 0.8376 | - |
0.3051 | 50813 | 0.7836 | - |
0.3101 | 51646 | 0.8089 | - |
0.3151 | 52479 | 0.8065 | - |
0.3201 | 53312 | 0.8284 | - |
0.3251 | 54145 | 0.7959 | - |
0.3301 | 54978 | 0.8332 | - |
0.3351 | 55811 | 0.7924 | - |
0.3401 | 56644 | 0.8171 | - |
0.3451 | 57477 | 0.7924 | - |
0.3501 | 58310 | 0.7977 | - |
0.3551 | 59143 | 0.7729 | - |
0.3601 | 59976 | 0.7617 | - |
0.3651 | 60809 | 0.8211 | - |
0.3701 | 61642 | 0.8497 | - |
0.3751 | 62475 | 0.8218 | - |
0.3802 | 63308 | 0.7846 | - |
0.3852 | 64141 | 0.7876 | - |
0.3902 | 64974 | 0.7912 | - |
0.3952 | 65807 | 0.7977 | - |
0.4000 | 66616 | - | 0.4974 |
0.4002 | 66640 | 0.8096 | - |
0.4052 | 67473 | 0.8356 | - |
0.4102 | 68306 | 0.788 | - |
0.4152 | 69139 | 0.7683 | - |
0.4202 | 69972 | 0.7358 | - |
0.4252 | 70805 | 0.7634 | - |
0.4302 | 71638 | 0.7535 | - |
0.4352 | 72471 | 0.756 | - |
0.4402 | 73304 | 0.7633 | - |
0.4452 | 74137 | 0.7509 | - |
0.4502 | 74970 | 0.7547 | - |
0.4552 | 75803 | 0.7539 | - |
0.4602 | 76636 | 0.7608 | - |
0.4652 | 77469 | 0.8262 | - |
0.4702 | 78302 | 0.8076 | - |
0.4752 | 79135 | 0.8179 | - |
0.4802 | 79968 | 0.7709 | - |
0.4852 | 80801 | 0.744 | - |
0.4902 | 81634 | 0.7846 | - |
0.4952 | 82467 | 0.7473 | - |
0.5000 | 83270 | - | 0.4776 |
0.5002 | 83300 | 0.7759 | - |
0.5052 | 84133 | 0.755 | - |
0.5102 | 84966 | 0.7308 | - |
0.5152 | 85799 | 0.7256 | - |
0.5202 | 86632 | 0.7703 | - |
0.5252 | 87465 | 0.7823 | - |
0.5302 | 88298 | 0.8109 | - |
0.5352 | 89131 | 0.7795 | - |
0.5402 | 89964 | 0.7833 | - |
0.5452 | 90797 | 0.7752 | - |
0.5502 | 91630 | 0.7975 | - |
0.5552 | 92463 | 0.7863 | - |
0.5602 | 93296 | 0.7337 | - |
0.5652 | 94129 | 0.7755 | - |
0.5702 | 94962 | 0.7928 | - |
0.5752 | 95795 | 0.7604 | - |
0.5802 | 96628 | 0.7983 | - |
0.5852 | 97461 | 0.7665 | - |
0.5902 | 98294 | 0.7749 | - |
0.5952 | 99127 | 0.7838 | - |
0.6000 | 99924 | - | 0.4669 |
0.6002 | 99960 | 0.7727 | - |
0.6052 | 100793 | 0.8049 | - |
0.6102 | 101626 | 0.7857 | - |
0.6152 | 102459 | 0.7622 | - |
0.6202 | 103292 | 0.8117 | - |
0.6252 | 104125 | 0.7711 | - |
0.6302 | 104958 | 0.7892 | - |
0.6353 | 105791 | 0.7938 | - |
0.6403 | 106624 | 0.728 | - |
0.6453 | 107457 | 0.7693 | - |
0.6503 | 108290 | 0.7875 | - |
0.6553 | 109123 | 0.7958 | - |
0.6603 | 109956 | 0.749 | - |
0.6653 | 110789 | 0.7788 | - |
0.6703 | 111622 | 0.7614 | - |
0.6753 | 112455 | 0.7577 | - |
0.6803 | 113288 | 0.7805 | - |
0.6853 | 114121 | 0.7677 | - |
0.6903 | 114954 | 0.7458 | - |
0.6953 | 115787 | 0.7962 | - |
0.7000 | 116578 | - | 0.4641 |
0.7003 | 116620 | 0.7275 | - |
0.7053 | 117453 | 0.7778 | - |
0.7103 | 118286 | 0.7885 | - |
0.7153 | 119119 | 0.8046 | - |
0.7203 | 119952 | 0.8222 | - |
0.7253 | 120785 | 0.7714 | - |
0.7303 | 121618 | 0.7983 | - |
0.7353 | 122451 | 0.7359 | - |
0.7403 | 123284 | 0.7618 | - |
0.7453 | 124117 | 0.783 | - |
0.7503 | 124950 | 0.763 | - |
0.7553 | 125783 | 0.809 | - |
0.7603 | 126616 | 0.794 | - |
0.7653 | 127449 | 0.7366 | - |
0.7703 | 128282 | 0.776 | - |
0.7753 | 129115 | 0.8053 | - |
0.7803 | 129948 | 0.7941 | - |
0.7853 | 130781 | 0.7722 | - |
0.7903 | 131614 | 0.7959 | - |
0.7953 | 132447 | 0.8061 | - |
0.8000 | 133232 | - | 0.4468 |
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.0
- Transformers: 4.46.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 1
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for yklymchuk-rztk/e5-3-test2
Base model
intfloat/multilingual-e5-baseEvaluation results
- Dot Accuracy@1 on bm fullself-reported0.483
- Dot Accuracy@3 on bm fullself-reported0.648
- Dot Accuracy@5 on bm fullself-reported0.736
- Dot Accuracy@10 on bm fullself-reported0.817
- Dot Precision@1 on bm fullself-reported0.483
- Dot Precision@3 on bm fullself-reported0.489
- Dot Precision@5 on bm fullself-reported0.495
- Dot Precision@10 on bm fullself-reported0.487
- Dot Recall@1 on bm fullself-reported0.012
- Dot Recall@3 on bm fullself-reported0.036