base_model: nvidia/Llama-3_1-Nemotron-51B-Instruct-GGUF
library_name: transformers
language:
- en
tags:
- nvidia
- llama-3
- pytorch
license: other
license_name: nvidia-open-model-license
license_link: >-
https://developer.download.nvidia.com/licenses/nvidia-open-model-license-agreement-june-2024.pdf
pipeline_tag: text-generation
quantized_by: ymcki
Original model: https://huggingface.co/nvidia/Llama-3_1-Nemotron-51B-Instruct-GGUF
Prompt Template
### System:
{system_prompt}
### User:
{user_prompt}
### Assistant:
Important for people who wants to do their own quantitization. The convert_hf_to_gguf.py in b4380 of llama.cpp doesn't read rope_theta parameter such that it can't generate gguf that can work with prompts longer than 4k tokens. There is currently a PR in llama.cpp to update convert_hf_to_gguf.py. If you can't wait for the PR to get thru, you can download a working convert_hf_to_gguf.py from here in this repository before you do the gguf conversion yourself.
Starting from b4380 of llama.cpp, DeciLMForCausalLM's variable Grouped Query Attention is now supported. Please download it and compile it to run the GGUFs in this repository.
This modification should support Llama-3_1-Nemotron 51B-Instruct fully. However, it may not support future DeciLMForCausalLM models that has no_op or linear ffn layers. Well, I suppose these support can be added when there are actually models using that types of layers.
Since I am a free user, so for the time being, I only upload models that might be of interest for most people.
Download a file (not the whole branch) from below:
Perplexity for f16 gguf is 6.646565 ± 0.040986.
Quant Type | imatrix | File Size | Delta Perplexity | KL Divergence | Description |
---|---|---|---|---|---|
Q6_K | calibration_datav3 | 42.26GB | -0.002436 ± 0.001565 | 0.003332 ± 0.000014 | Good for Nvidia cards or Apple Silicon with 48GB RAM. Should perform very close to the original |
Q5_K_M | calibration_datav3 | 36.47GB | 0.020310 ± 0.002052 | 0.005642 ± 0.000024 | Good for A100 40GB or dual 3090. Better than Q4_K_M but larger and slower. |
Q4_K_M | calibration_datav3 | 31.04GB | 0.055444 ± 0.002982 | 0.012021 ± 0.000052 | Good for A100 40GB or dual 3090. Higher cost performance ratio than Q5_K_M. |
IQ4_NL | calibration_datav3 | 29.30GB | 0.088279 ± 0.003944 | 0.020314 ± 0.000093 | For 32GB cards, e.g. 5090. Minor performance gain doesn't justify its use over IQ4_XS |
IQ4_XS | calibration_datav3 | 27.74GB | 0.095486 ± 0.004039 | 0.020962 ± 0.000097 | For 32GB cards, e.g. 5090. Too slow for CPU and Apple. Recommended. |
Q4_0 | calibration_datav3 | 29.34GB | 0.543042 ± 0.009290 | 0.077602 ± 0.000389 | For 32GB cards, e.g. 5090. Too slow for CPU and Apple. |
IQ3_M | calibration_datav3 | 23.49GB | 0.313812 ± 0.006299 | 0.054266 ± 0.000205 | Largest model that can fit a single 3090 at 5k context. Not recommeneded for CPU or Apple Silicon due to high computational cost. |
IQ3_S | calibration_datav3 | 22.65GB | 0.434774 ± 0.007162 | 0.069264 ± 0.000242 | Largest model that can fit a single 3090 at 7k context. Not recommended for CPU or Apple Silicon due to high computational cost. |
IQ3_XXS | calibration_datav3 | 20.19GB | 0.638630 ± 0.009693 | 0.092827 ± 0.000367 | Largest model that can fit a single 3090 at 13k context. Not recommended for CPU or Apple Silicon due to high computational cost. |
Q3_K_S | calibration_datav3 | 22.65GB | 0.698971 ± 0.010387 | 0.089605 ± 0.000443 | Largest model that can fit a single 3090 that performs well in all platforms |
Q3_K_S | none | 22.65GB | 2.224537 ± 0.024868 | 0.283028 ± 0.001220 | Largest model that can fit a single 3090 without imatrix |
Convert safetensors to f16 gguf
Make sure you have llama.cpp git cloned:
python3 convert_hf_to_gguf.py Llama-3_1-Nemotron 51B-Instruct/ --outfile Llama-3_1-Nemotron 51B-Instruct.f16.gguf --outtype f16
Convert f16 gguf to Q4_0 gguf without imatrix
Make sure you have llama.cpp compiled:
./llama-quantize Llama-3_1-Nemotron 51B-Instruct.f16.gguf Llama-3_1-Nemotron 51B-Instruct.Q4_0.gguf q4_0
Convert f16 gguf to Q4_0 gguf with imatrix
Make sure you have llama.cpp compiled. Then create an imatrix with a dataset.
./llama-imatrix -m Llama-3_1-Nemotron-51B-Instruct.f16.gguf -f calibration_datav3.txt -o Llama-3_1-Nemotron-51B-Instruct.imatrix --chunks 32
Then convert with the created imatrix.
./llama-quantize Llama-3_1-Nemotron-51B-Instruct.f16.gguf --imatrix Llama-3_1-Nemotron-51B-Instruct.imatrix Llama-3_1-Nemotron-51B-Instruct.imatrix.Q4_0.gguf q4_0
Calculate perplexity and KL divergence
First, download wikitext.
bash ./scripts/get-wikitext-2.sh
Second, find the base values of F16 gguf. Please be warned that the generated base value file is about 10GB. Adjust GPU layers depending on your VRAM.
./llama-perplexity --kl-divergence-base Llama-3_1-Nemotron-51B-Instruct.f16.kld -m Llama-3_1-Nemotron-51B-Instruct.f16.gguf -f wikitext-2-raw/wiki.test.raw -ngl 100
Finally, calculate the perplexity and KL divergence of Q4_0 gguf. Adjust GPU layers depending on your VRAM.
./llama-perplexity --kl-divergence-base Llama-3_1-Nemotron-51B-Instruct.f16.kld --kl_divergence -m Llama-3_1-Nemotron-51B-Instruct.Q4_0.gguf -ngl 100 >& Llama-3_1-Nemotron-51B-Instruct.Q4_0.kld
Downloading using huggingface-cli
First, make sure you have hugginface-cli installed:
pip install -U "huggingface_hub[cli]"
Then, you can target the specific file you want:
huggingface-cli download ymcki/Llama-3_1-Nemotron 51B-Instruct-GGUF --include "Llama-3_1-Nemotron 51B-Instruct.Q4_0.gguf" --local-dir ./
Running the model using llama-cli
First, go to llama.cpp release page and download the appropriate pre-compiled release starting from b4380. If that doesn't work, then download any version of llama.cpp starting from b4380. Compile it, then run
./llama-cli -m ~/Llama-3_1-Nemotron-51B-Instruct.Q3_K_S.gguf -p 'You are a European History Professor named Professor Whitman.' -cnv -ngl 100
Credits
Thank you bartowski for providing a README.md to get me started.