metadata
language:
- ga
- en
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- ymoslem/IWSLT2023-GA-EN
- ymoslem/FLEURS-GA-EN
- ymoslem/BitesizeIrish-GA-EN
- ymoslem/SpokenWords-GA-EN-MTed
model-index:
- name: Whisper Medium GA-EN Speech Translation
results: []
Whisper Medium GA-EN Speech Translation
This model is a fine-tuned version of openai/whisper-medium on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia dataset. It achieves the following results on the evaluation set:
- epoch: 0.49
- eval_bleu: 30.37
- eval_chrf: 50.78
- eval_loss: 1.0718
- eval_runtime: 116.0928
- eval_samples_per_second: 2.989
- eval_steps_per_second: 0.19
- eval_wer: 68.6628
- step: 1500
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 0.03
- training_steps: 2000
- mixed_precision_training: Native AMP
Framework versions
- Transformers 4.39.3
- Pytorch 2.0.1+cu118
- Datasets 2.18.0
- Tokenizers 0.15.2