ymoslem's picture
End of training
30f6e1e verified
|
raw
history blame
2.87 kB
metadata
language:
  - ga
  - en
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - ymoslem/IWSLT2023-GA-EN
  - ymoslem/FLEURS-GA-EN
  - ymoslem/BitesizeIrish-GA-EN
  - ymoslem/SpokenWords-GA-EN-MTed
  - ymoslem/Tatoeba-Speech-Irish
  - ymoslem/Wikimedia-Speech-Irish
metrics:
  - bleu
  - wer
model-index:
  - name: Whisper Small GA-EN Speech Translation
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia
          type: ymoslem/IWSLT2023-GA-EN
        metrics:
          - name: Bleu
            type: bleu
            value: 23.1
          - name: Wer
            type: wer
            value: 82.89058982440342

Whisper Small GA-EN Speech Translation

This model is a fine-tuned version of openai/whisper-small on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2172
  • Bleu: 23.1
  • Chrf: 42.54
  • Wer: 82.8906

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 0.03
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Chrf Wer
2.8459 0.07 100 2.0769 3.28 18.43 149.0770
2.3328 0.13 200 1.8396 4.5 22.06 207.7443
2.1669 0.2 300 1.6215 14.6 30.8 89.1941
1.8606 0.26 400 1.5030 14.65 33.33 92.4358
1.7255 0.33 500 1.4085 14.9 35.14 103.8271
1.5855 0.39 600 1.3587 15.78 35.02 103.0617
1.5875 0.46 700 1.2986 25.3 41.37 69.4732
1.44 0.53 800 1.2575 25.78 42.23 70.0585
1.3317 0.59 900 1.2338 23.24 41.64 79.1085
1.3166 0.66 1000 1.2172 23.1 42.54 82.8906

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2