mt5-small-amharic-text-summaization

This model is a fine-tuned version of google/mt5-small on the None dataset. It achieves the following results on the evaluation set:

  • eval_loss: 1.9166
  • eval_rouge1: 17.2202
  • eval_rouge2: 9.6515
  • eval_rougeL: 16.8757
  • eval_rougeLsum: 16.8802
  • eval_runtime: 189.6659
  • eval_samples_per_second: 14.178
  • eval_steps_per_second: 1.777
  • epoch: 10.0
  • step: 13450

Model description

More information needed

Intended uses & limitations

Trained on news articles and headlines.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
75
Safetensors
Model size
300M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for yohannesahunm/mt5-small-Amharic-text-summaization

Base model

google/mt5-small
Finetuned
(399)
this model