BERT Amharic Text Embedding Small

This is a sentence-transformers model finetuned from rasyosef/bert-small-amharic on the json dataset. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: rasyosef/bert-small-amharic
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 512 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("yosefw/bert-amharic-embed-small-v4")
# Run inference
sentences = [
    'ኦዴፓ የፓርቲውን ሊቀመንበር እና ምክትል ሊቀመንበር መረጠ',
    'የኦሮሞ ዴሞክራሲያዊ ፓርቲ (ኦዴፓ) ዝያካሄደ ባለው\xa0 9ኛው ድርጅታዊ ጉባዔ የፓርቲውን ሊቀመንበር እና ምክትል ሊቀመንበር መርጧል።ፓርቲው በዛሬው እለት ባካሄደው ምርጫ፦1 ዶክተር አብይ አህመድን የፓርቲው ሊቀመንበር2 አቶ ለማ መገርሳን የፓርቲው ምክትል ሊቀመንበር አድርጎ መርጧል።በዚህም መሰረት በዛሬው እለት የተመረጡት ሊቀመንበሩ እና ምክትል ሊቀመንበሩ እስከ ቀጣዩ ጉባዔ ድረስ የኦሮሞ ዴሞክራሲያዊ ፓርቲ (ኦዴፓ) አመራር\xa0 ሆነው እንዲቀጥሎ\xa0 ሾሟል ።በተጨማሪም ጉባኤው የኦዴግ\xa0 ለኢህአዴግ ስራ አስፈፃሚ ኮሚቴ አባላት ምርጫን\xa0 በማካሄድ\xa0 ዘጠኝ\xa0 አባላትን መርጧል ።\xa0',
    'አምስተኛ ቀኑን የያዘው የሴካፋ ከ15 ዓመት በታች ውድድር ዛሬም ሲቀጥል ኤርትራ ሱዳንን በሰፊ ውጤት አሸንፋ የማለፍ ዕድልዋ አለምልማለች። ኬንያ ደግሞ ከብሩንዲ ጋር ነጥብ ተጋርታለች።በስምንት ሰዓት ጨዋታቸውን ያካሄዱት ኬንያ እና ብሩንዲ ሲሆኑ ኬንያ 1-0 እየመራች አመዛኙ የጨዋታው ደቂቃዎች ብትቆይም ብሩንዲ በጨዋታው መገባደጃ አከባቢ ግብ አስቆጥራ ከመሸነፍ ድናለች።የዕለቱ ሁለተኛ ጨዋታ አዘጋጇ ኤርትራን ከ ሱዳን ያገናኘው ሲሆን በርካታ ተመልካችም ተከታትሎታል። በመጀመርያው ጨዋታዋ በደጋፊዋ ፊት ሽንፈት የገጠማት ኤርትራ ግጥሚያውን 6-0 በማሸነፍ ነጥቧን ወደ ሦስት አሳድጋ ወደ ግማሽ ፍፃሜ የማለፍ ተስፋዋን አለምልማለች። አሕመድ አውድ የተባለ ተጫዋች ሦስት ግቦች አስቆጥሮ ሐት-ትሪክ ሲሰራ ተመስገን ተስፋይ የተባለው የመስመር ተጫዋች ደግሞ አንድ ጎል አስቆጥሯል። የተቀሩት ሁለት ግቦች ተያ አሕመድ የተባለ የሱዳን ተከላካይ በራሱ ግብ ላይ የተቆጠሩ ናቸው።ቡድን | ተጫወተ | ልዩነት |\xa0 ነጥብ1) ኬንያ 3 (+6)\xa0 \xa072) ብሩንዲ 3 (+2) 73) ኤርትራ 2 (+5) 34) ሶማልያ 2 (-3) 05) ሱዳን 2\xa0 (-10) 0ውድድሩ ነገም ሲቀጥል ደቡብ ሱዳን ከ ታንዛንያ በ8:00 ፣ ኢትዮጵያ ከሩዋንዳ በ10:30 ይጫወታሉ።',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric dim_512 dim_256 dim_128
cosine_accuracy@1 0.5564 0.5537 0.537
cosine_accuracy@3 0.7009 0.6931 0.6807
cosine_accuracy@5 0.7496 0.7402 0.7297
cosine_accuracy@10 0.8119 0.8086 0.7944
cosine_precision@1 0.5564 0.5537 0.537
cosine_precision@3 0.2336 0.231 0.2269
cosine_precision@5 0.1499 0.148 0.1459
cosine_precision@10 0.0812 0.0809 0.0794
cosine_recall@1 0.5564 0.5537 0.537
cosine_recall@3 0.7009 0.6931 0.6807
cosine_recall@5 0.7496 0.7402 0.7297
cosine_recall@10 0.8119 0.8086 0.7944
cosine_ndcg@10 0.6819 0.6783 0.6637
cosine_mrr@10 0.6407 0.637 0.6222
cosine_map@100 0.6462 0.6423 0.628

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 62,833 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 3 tokens
    • mean: 16.23 tokens
    • max: 91 tokens
    • min: 35 tokens
    • mean: 315.61 tokens
    • max: 512 tokens
  • Samples:
    anchor positive
    የ8ኛ እና የ12ኛ ክፍል ተማሪዎች የማካካሻ ትምህርት መማር ጀመሩ። ባሕር ዳር፡ ጥቅምት 10/2013 ዓ.ም (አብመድ) በባሕር ዳር ከተማ አስተዳደር ለሚገኙ የ12ኛ እና የ8ኛ ክፍል ተማሪዎች የማካካሻ ትምህርት መስጠት መጀመሩን መምሪያው አስታውቋል፡፡በባሕር ዳር ከተማ አስተዳደር ለሚገኙ ለ12ኛ እና ለ8ኛ ክፍል ተማሪዎች ሀገራዊና ሀገር አቀፍ ዜና ፈተና ከመወስዳቸው በፊት ለ45 ቀናት የሚቆይ የማካካሻ ትምህርት ከጥቅምት 09/2013 ዓ.ም ጀምሮ መስጠት መጀመሩን የከተማ አስተዳደሩ ትምህርት መምሪያ ምክትል ኃላፊ መላክ ጀመረ ተናግረዋል፡፡“ዛሬ ተቀብለን ማስተማር የጀመርነው የኮሮናቫይረስን ለመከላከል የአፍና የአፍንጫ መሸፈኛ ጭምብል የተጠቀሙ ተማሪዎችን ብቻ ነው፡፡ ከትምህርት ሚኒስቴር የተላከው ጭምብል እስከዛሬ ባይደርሰንም ወላጆች ለልጆቻቸው በገዙት ተጠቅመን ነው ማስተማር የጀመርነው” ብለዋል አቶ መላክ። መማርም ሆነ ማስተማር የሚቻለው ጤና ሲኖር ብቻ ስለሆነ ተማሪዎች ያለማንም ክትትል ጭምብል እንዲጠቀሙም ጥሪ አቅርበዋል፡፡በሚቀጥለው ሳምንት ከ1ኛ ክፍል በስተቀር ሁሉም ትምህርት ቤቶች ለሦስት ሳምንታት የማካካሻ ትምህርት እንደሚወስዱ የተናገሩት ምክትል መምሪያ ኃላፊው ከማካካሻው ትምህርት በኋላ የ2013 ትምህርት ዘመን ሙሉ በሙሉ የመማር ማስተማር ሂደቱ እንደሚቀጥል አስገንዝበዋል፡፡ወረርሽኙን ለመከላከል ሲባል ትምህርት ሚኒስቴር ባስቀመጠው አቅጣጫ መሠረት የመንግሥት ትምህርት ቤቶች ከአንድ እስከ ሦስት ፈረቃ እንዲሁም የግል ትምህርት ቤቶች ደግሞ በአንድ እና ሁለት ፈረቃ ብቻ ማስተማር እንደሚቀጥሉ አቶ መላክ ጠቁመዋል፡፡
    በክልሎች በተፈጠሩ ግጭቶች ላይ ተሳትፈዋል በተባሉ 1 ሺህ 323 ተጠርጣሪዎች ላይ ክስ ተመሰረተ በተለያዩ ክልሎች በተፈጠሩ ግጭቶች ላይ ተሳትፈዋል በተባሉ 1 ሺህ 323 ተጠርጣሪዎች ላይ ክስ ተመሰረተ።በ2011 በጀት ዓመት በተለያዩ ክልሎች በተፈጠሩ ግጭቶች ተሳትፈዋል በተባሉ 1 ሺህ 323 ተጠርጣሪዎች ላይ ክስ መመስረቱን የኢፌዲሪ ጠቅላይ ዐቃቤ ሕግ አስታወቀ፡፡በተፈጠረው ሁከትና ብጥብጥ 1 ሺህ 229 ሰዎች ህይዎት ያለፈ ሲሆን በ1 ሺህ 393 ሰዎች ላይ ደግሞ ቀላልና ከባድ የአካል ጉዳት ሲደርስ በ19 ሰዎች ላይ የግድያ ሙከራ መደረጉን በጠቅላይ ዐቃቤ ሕግ የተደራጁ ድንበር ተሸጋሪ ወንጀሎች ዳይሬክተር የሆኑት አቶ ፍቃዱ ፀጋ ገልፀዋል፡፡በግጭቶቹ ከ2.2 ቢሊዮን ብር በላይ የሚገመት የዜጎች ንብረት የወደመ ሲሆን፤ 1.2 ሚሊዮን ዜጎች ከመኖሪያ ቤታቸውና ከአካባቢያቸው ተፈናቅለዋል፡፡ከተከሳሾቹ መካከል 645 ተጠርጣሪዎች በቁጥጥር ስር ውለው ጉዳያቸው እየታየ ሲሆን 667 የሚሆኑ ተጠርጣሪዎች ደግሞ በቁጥጥር ስር አልዋሉም፡፡የ10 ተጠርጣሪዎች ክስም በምህረት መነሳቱን ዳይሬክተሩ አክለዋል፡፡በመጨረሻም አቶ ፍቃዱ ተጠርጣሪዎችን በቁጥጥር ስር ለማዋል በሚደረግ እንቅስቃሴ ዙሪያ የሚስተዋለው ክፍተት አስመልክቶ መፍትሔ ያሉትን ሀሳብ ሲጠቁሙ ይህንን ችግር ለመቅረፍ ህብረተሰቡና የሚመለከታቸው ባለድርሻ አካላት ከፍትህ አካላት ጎን በመቆምና ተጠርጣሪዎችን አሳልፎ በመስጠት በኩል በጉዳዩ ላይ በባለቤትነት ስሜት ሊሰሩ እንደሚገባ አጽእኖት ሰጥተው መልዕክታቸውን አስተላልፈዋል፡፡በሌላ በኩል በአማራ ክልል በጃዊ ወረዳና በመተክል ዞን፤ በጎንደርና አካባቢው በተፈጠረ ሁከትና ብጥብጥ፤ በሰሜን ሸዋ አስተዳደር እንዲሁም በቤንሻጉል ጉምዝ ክልል ከማሻ ዞን ውስጥ በሚገኙ የተለያዩ ወረዳዎችና ቀበሌዎችና የዚሁ ዞን አጎራባች በሆነው በኦሮሚያ ክልል ምስራቅና ምዕራብ ወለጋ ዞን በተለያዩ ቀ...
    ከሽመና ሥራ ---- እስከ ሚሊየነርነት! “ይቅርታ መጠየቅ ጀግንነት እንጂ ሽንፈት አይደለም”የኮንሶው ተወላጅ አቶ ዱላ ኩሴ፤ቤሳቤስቲን አልነበራቸውም፡፡ ለብዙ ዓመታት በሽመና ስራ ላይ ቆይተዋል፡፡ በብዙ ልፋትና ትጋት፣ወጥተው ወርደው፣ ነው ለስኬት የበቁት፡፡ ዛሬበሚሊዮን ብሮች የሚንቀሳቀሱ የንግድ ድርጅቶች ባለቤት ሆነዋል፡፡ ባለጠጋ ናቸው፡፡ የ50 ዓመቱ ጎልማሳ አቶ ዱላ፤በልጆችም ተንበሽብሸዋል፡፡ የ17 ልጆች አባት ናቸው፡፡ በቅርቡበሚዲያ የሰጡት አንድ አስተያየት የአገሬውን ህዝብ ማስቆጣቱን የሚናገሩት ባለሃብቱ፤አሁን በሽማግሌ እርቅ ለመፍጠር እየተሞከረ መሆኑን ጠቁመዋል፡፡ ባለሃብቱ ከህዝቡ ጋር ቅራኔውስጥ የከተታቸው ጉዳይ ምን ይሆን? የአዲስ አድማስ ጋዜጠኛ ማህሌት ኪዳነወልድ፤ ከአቶ ዱላ ኩሴ ጋር ይሄን ጨምሮ በስኬት ጉዟቸውና በንግድ ሥራቸው ዙሪያ አነጋግራቸዋለች፡፡መቼ ነው የሽመና ሥራ የጀመሩት?በ13 ወይም በ14 ዓመቴ ይመስለኛል፡፡ ለቤተሰቤ አራተኛ ልጅ ነኝ፡፡ ለ10 ዓመታት ያህል በሽመና ስራ ላይ ቆይቻለሁ፡፡ ስራዎቼንም የምሸጠው እዛው በአካባቢው ላሉ ሰዎች ነበር፡፡ ቀጣዩ ሥራዎስ ምን ነበር?ወደ ጅንካ በመሄድ ለ4 ዓመታት ያህል ኦሞ ዞን ጂንካ ከተማ ላይ ሽያጩን ቀጠልኩ፡፡ በኋላም ወደ ወላይታ ተመልሼ፣ ማግና ሰዴቦራ /ብርድ ቦታ የሚለበስ የጋቢ አይነት/ መሸጥ ጀመርኩ፡፡ ለ3 ዓመታትም ቦዲቲ እየወሰድኩ ሸጫለሁ፡፡ እንግዲህ አቅም እየጠነከረ፣ ገንዘብ እየተሰበሰበ ሲመጣ፣ አነስተኛ ሸቀጣ ሸቀጥ ሱቅ ከፈትኩኝ፡፡ የቤት እቃና ልብስ መሸጥ ጀመርኩኝ፡፡ ብዙም ሳልቆይ ወደ ከተማ ወርጄ፣ ወደ ሆቴል ስራ ገባሁ፡፡ ተቀጥረው ነው ወይስ የራስዎን ሆቴል?የራሴን ነው፡፡ ኮንሶ እድገት ሆቴል ይባላል፡፡ በ91 ዓመተ ምህረት ነበር ሆቴሉን አነስ አድርጌ የከፈትኩት፡፡ በኋላም የሸቀጣሸቀጥ ገበያው እየተቀዛቀዘ በ...
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            512,
            256,
            128
        ],
        "matryoshka_weights": [
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 128
  • num_train_epochs: 5
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • seed: 16
  • fp16: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 16
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss dim_512_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10
0.0102 10 6.4117 - - -
0.0204 20 6.1284 - - -
0.0305 30 5.5623 - - -
0.0407 40 4.6726 - - -
0.0509 50 3.9085 - - -
0.0611 60 3.1642 - - -
0.0713 70 2.9322 - - -
0.0815 80 2.2658 - - -
0.0916 90 2.2462 - - -
0.1018 100 2.0719 - - -
0.1120 110 1.8789 - - -
0.1222 120 1.7283 - - -
0.1324 130 1.5547 - - -
0.1426 140 1.4697 - - -
0.1527 150 1.5327 - - -
0.1629 160 1.2631 - - -
0.1731 170 1.4158 - - -
0.1833 180 1.1835 - - -
0.1935 190 1.3018 - - -
0.2037 200 1.2201 - - -
0.2138 210 1.1502 - - -
0.2240 220 1.2243 - - -
0.2342 230 1.216 - - -
0.2444 240 1.0332 - - -
0.2546 250 1.1029 - - -
0.2648 260 1.1956 - - -
0.2749 270 1.0615 - - -
0.2851 280 1.0259 - - -
0.2953 290 1.1391 - - -
0.3055 300 0.8464 - - -
0.3157 310 0.8501 - - -
0.3259 320 0.8316 - - -
0.3360 330 0.9589 - - -
0.3462 340 0.7644 - - -
0.3564 350 1.163 - - -
0.3666 360 0.8127 - - -
0.3768 370 0.9098 - - -
0.3870 380 0.965 - - -
0.3971 390 0.8037 - - -
0.4073 400 0.9352 - - -
0.4175 410 0.9079 - - -
0.4277 420 1.1066 - - -
0.4379 430 0.8274 - - -
0.4481 440 0.9184 - - -
0.4582 450 0.8426 - - -
0.4684 460 0.8556 - - -
0.4786 470 0.6955 - - -
0.4888 480 0.7943 - - -
0.4990 490 0.7749 - - -
0.5092 500 0.8938 - - -
0.5193 510 0.8718 - - -
0.5295 520 0.7866 - - -
0.5397 530 0.7711 - - -
0.5499 540 0.7697 - - -
0.5601 550 0.6856 - - -
0.5703 560 0.788 - - -
0.5804 570 0.6557 - - -
0.5906 580 0.695 - - -
0.6008 590 0.773 - - -
0.6110 600 0.7512 - - -
0.6212 610 0.7601 - - -
0.6314 620 0.7975 - - -
0.6415 630 0.6686 - - -
0.6517 640 0.8318 - - -
0.6619 650 0.7449 - - -
0.6721 660 0.743 - - -
0.6823 670 0.635 - - -
0.6925 680 0.618 - - -
0.7026 690 0.7143 - - -
0.7128 700 0.6525 - - -
0.7230 710 0.5788 - - -
0.7332 720 0.888 - - -
0.7434 730 0.6392 - - -
0.7536 740 0.7032 - - -
0.7637 750 0.6438 - - -
0.7739 760 0.7253 - - -
0.7841 770 0.7902 - - -
0.7943 780 0.733 - - -
0.8045 790 0.587 - - -
0.8147 800 0.6634 - - -
0.8248 810 0.6337 - - -
0.8350 820 0.6697 - - -
0.8452 830 0.6551 - - -
0.8554 840 0.6387 - - -
0.8656 850 0.6928 - - -
0.8758 860 0.6343 - - -
0.8859 870 0.6328 - - -
0.8961 880 0.6363 - - -
0.9063 890 0.7253 - - -
0.9165 900 0.5123 - - -
0.9267 910 0.689 - - -
0.9369 920 0.5209 - - -
0.9470 930 0.696 - - -
0.9572 940 0.6313 - - -
0.9674 950 0.6036 - - -
0.9776 960 0.5665 - - -
0.9878 970 0.6993 - - -
0.9980 980 0.7761 - - -
1.0 982 - 0.5886 0.5750 0.5465
1.0081 990 0.4571 - - -
1.0183 1000 0.307 - - -
1.0285 1010 0.3329 - - -
1.0387 1020 0.4164 - - -
1.0489 1030 0.4337 - - -
1.0591 1040 0.445 - - -
1.0692 1050 0.3437 - - -
1.0794 1060 0.3571 - - -
1.0896 1070 0.3564 - - -
1.0998 1080 0.433 - - -
1.1100 1090 0.3144 - - -
1.1202 1100 0.3414 - - -
1.1303 1110 0.4011 - - -
1.1405 1120 0.3312 - - -
1.1507 1130 0.3409 - - -
1.1609 1140 0.3312 - - -
1.1711 1150 0.3852 - - -
1.1813 1160 0.393 - - -
1.1914 1170 0.4347 - - -
1.2016 1180 0.2968 - - -
1.2118 1190 0.3373 - - -
1.2220 1200 0.398 - - -
1.2322 1210 0.31 - - -
1.2424 1220 0.4122 - - -
1.2525 1230 0.3649 - - -
1.2627 1240 0.3747 - - -
1.2729 1250 0.394 - - -
1.2831 1260 0.2753 - - -
1.2933 1270 0.3109 - - -
1.3035 1280 0.2949 - - -
1.3136 1290 0.3746 - - -
1.3238 1300 0.3731 - - -
1.3340 1310 0.3966 - - -
1.3442 1320 0.3942 - - -
1.3544 1330 0.3705 - - -
1.3646 1340 0.3346 - - -
1.3747 1350 0.3677 - - -
1.3849 1360 0.4009 - - -
1.3951 1370 0.376 - - -
1.4053 1380 0.387 - - -
1.4155 1390 0.3774 - - -
1.4257 1400 0.4457 - - -
1.4358 1410 0.37 - - -
1.4460 1420 0.3806 - - -
1.4562 1430 0.3347 - - -
1.4664 1440 0.4129 - - -
1.4766 1450 0.3688 - - -
1.4868 1460 0.3744 - - -
1.4969 1470 0.2638 - - -
1.5071 1480 0.3189 - - -
1.5173 1490 0.2514 - - -
1.5275 1500 0.3799 - - -
1.5377 1510 0.3886 - - -
1.5479 1520 0.3666 - - -
1.5580 1530 0.2758 - - -
1.5682 1540 0.2854 - - -
1.5784 1550 0.3092 - - -
1.5886 1560 0.3872 - - -
1.5988 1570 0.2888 - - -
1.6090 1580 0.4276 - - -
1.6191 1590 0.4662 - - -
1.6293 1600 0.3059 - - -
1.6395 1610 0.3544 - - -
1.6497 1620 0.3815 - - -
1.6599 1630 0.3486 - - -
1.6701 1640 0.3073 - - -
1.6802 1650 0.3204 - - -
1.6904 1660 0.4152 - - -
1.7006 1670 0.3392 - - -
1.7108 1680 0.3572 - - -
1.7210 1690 0.3017 - - -
1.7312 1700 0.3216 - - -
1.7413 1710 0.2506 - - -
1.7515 1720 0.326 - - -
1.7617 1730 0.3089 - - -
1.7719 1740 0.2808 - - -
1.7821 1750 0.3341 - - -
1.7923 1760 0.3944 - - -
1.8024 1770 0.2886 - - -
1.8126 1780 0.2101 - - -
1.8228 1790 0.3883 - - -
1.8330 1800 0.2787 - - -
1.8432 1810 0.3588 - - -
1.8534 1820 0.3926 - - -
1.8635 1830 0.2449 - - -
1.8737 1840 0.297 - - -
1.8839 1850 0.291 - - -
1.8941 1860 0.3487 - - -
1.9043 1870 0.3364 - - -
1.9145 1880 0.281 - - -
1.9246 1890 0.2742 - - -
1.9348 1900 0.3553 - - -
1.9450 1910 0.4813 - - -
1.9552 1920 0.2471 - - -
1.9654 1930 0.3288 - - -
1.9756 1940 0.2973 - - -
1.9857 1950 0.2684 - - -
1.9959 1960 0.3226 - - -
2.0 1964 - 0.6511 0.6428 0.6246
2.0061 1970 0.3082 - - -
2.0163 1980 0.165 - - -
2.0265 1990 0.1497 - - -
2.0367 2000 0.1745 - - -
2.0468 2010 0.2091 - - -
2.0570 2020 0.1712 - - -
2.0672 2030 0.1988 - - -
2.0774 2040 0.1831 - - -
2.0876 2050 0.1848 - - -
2.0978 2060 0.185 - - -
2.1079 2070 0.1721 - - -
2.1181 2080 0.2134 - - -
2.1283 2090 0.1688 - - -
2.1385 2100 0.2134 - - -
2.1487 2110 0.2032 - - -
2.1589 2120 0.1766 - - -
2.1690 2130 0.177 - - -
2.1792 2140 0.1663 - - -
2.1894 2150 0.1487 - - -
2.1996 2160 0.1266 - - -
2.2098 2170 0.2309 - - -
2.2200 2180 0.146 - - -
2.2301 2190 0.1555 - - -
2.2403 2200 0.1527 - - -
2.2505 2210 0.1585 - - -
2.2607 2220 0.1616 - - -
2.2709 2230 0.1395 - - -
2.2811 2240 0.1427 - - -
2.2912 2250 0.1557 - - -
2.3014 2260 0.2213 - - -
2.3116 2270 0.1887 - - -
2.3218 2280 0.1648 - - -
2.3320 2290 0.1723 - - -
2.3422 2300 0.2052 - - -
2.3523 2310 0.1946 - - -
2.3625 2320 0.1446 - - -
2.3727 2330 0.1922 - - -
2.3829 2340 0.2052 - - -
2.3931 2350 0.1991 - - -
2.4033 2360 0.2017 - - -
2.4134 2370 0.127 - - -
2.4236 2380 0.1785 - - -
2.4338 2390 0.1386 - - -
2.4440 2400 0.1281 - - -
2.4542 2410 0.1647 - - -
2.4644 2420 0.1534 - - -
2.4745 2430 0.1565 - - -
2.4847 2440 0.1904 - - -
2.4949 2450 0.1127 - - -
2.5051 2460 0.1383 - - -
2.5153 2470 0.1688 - - -
2.5255 2480 0.1732 - - -
2.5356 2490 0.1359 - - -
2.5458 2500 0.1738 - - -
2.5560 2510 0.1565 - - -
2.5662 2520 0.1739 - - -
2.5764 2530 0.1286 - - -
2.5866 2540 0.1812 - - -
2.5967 2550 0.1611 - - -
2.6069 2560 0.144 - - -
2.6171 2570 0.1417 - - -
2.6273 2580 0.1033 - - -
2.6375 2590 0.1533 - - -
2.6477 2600 0.1549 - - -
2.6578 2610 0.2584 - - -
2.6680 2620 0.1583 - - -
2.6782 2630 0.1851 - - -
2.6884 2640 0.1936 - - -
2.6986 2650 0.1337 - - -
2.7088 2660 0.1392 - - -
2.7189 2670 0.1583 - - -
2.7291 2680 0.1667 - - -
2.7393 2690 0.1583 - - -
2.7495 2700 0.1638 - - -
2.7597 2710 0.1695 - - -
2.7699 2720 0.1503 - - -
2.7800 2730 0.1149 - - -
2.7902 2740 0.2424 - - -
2.8004 2750 0.1077 - - -
2.8106 2760 0.1116 - - -
2.8208 2770 0.1418 - - -
2.8310 2780 0.1402 - - -
2.8411 2790 0.1162 - - -
2.8513 2800 0.1258 - - -
2.8615 2810 0.146 - - -
2.8717 2820 0.1784 - - -
2.8819 2830 0.1455 - - -
2.8921 2840 0.1945 - - -
2.9022 2850 0.1094 - - -
2.9124 2860 0.1502 - - -
2.9226 2870 0.1845 - - -
2.9328 2880 0.2751 - - -
2.9430 2890 0.1363 - - -
2.9532 2900 0.1379 - - -
2.9633 2910 0.1491 - - -
2.9735 2920 0.2025 - - -
2.9837 2930 0.148 - - -
2.9939 2940 0.17 - - -
3.0 2946 - 0.6708 0.6650 0.6472
3.0041 2950 0.0943 - - -
3.0143 2960 0.1001 - - -
3.0244 2970 0.1021 - - -
3.0346 2980 0.1382 - - -
3.0448 2990 0.1007 - - -
3.0550 3000 0.1096 - - -
3.0652 3010 0.1131 - - -
3.0754 3020 0.0846 - - -
3.0855 3030 0.0877 - - -
3.0957 3040 0.0942 - - -
3.1059 3050 0.0882 - - -
3.1161 3060 0.1211 - - -
3.1263 3070 0.1079 - - -
3.1365 3080 0.0949 - - -
3.1466 3090 0.1258 - - -
3.1568 3100 0.1008 - - -
3.1670 3110 0.1337 - - -
3.1772 3120 0.0958 - - -
3.1874 3130 0.0874 - - -
3.1976 3140 0.0817 - - -
3.2077 3150 0.1125 - - -
3.2179 3160 0.0948 - - -
3.2281 3170 0.0812 - - -
3.2383 3180 0.1068 - - -
3.2485 3190 0.1115 - - -
3.2587 3200 0.0993 - - -
3.2688 3210 0.1279 - - -
3.2790 3220 0.1039 - - -
3.2892 3230 0.1066 - - -
3.2994 3240 0.0758 - - -
3.3096 3250 0.105 - - -
3.3198 3260 0.08 - - -
3.3299 3270 0.0759 - - -
3.3401 3280 0.1009 - - -
3.3503 3290 0.096 - - -
3.3605 3300 0.1322 - - -
3.3707 3310 0.1056 - - -
3.3809 3320 0.0795 - - -
3.3910 3330 0.0687 - - -
3.4012 3340 0.1252 - - -
3.4114 3350 0.0945 - - -
3.4216 3360 0.1075 - - -
3.4318 3370 0.1267 - - -
3.4420 3380 0.117 - - -
3.4521 3390 0.0728 - - -
3.4623 3400 0.1137 - - -
3.4725 3410 0.1077 - - -
3.4827 3420 0.0875 - - -
3.4929 3430 0.1312 - - -
3.5031 3440 0.0911 - - -
3.5132 3450 0.0888 - - -
3.5234 3460 0.1368 - - -
3.5336 3470 0.1107 - - -
3.5438 3480 0.0947 - - -
3.5540 3490 0.1126 - - -
3.5642 3500 0.1004 - - -
3.5743 3510 0.1197 - - -
3.5845 3520 0.0861 - - -
3.5947 3530 0.0955 - - -
3.6049 3540 0.1246 - - -
3.6151 3550 0.0876 - - -
3.6253 3560 0.1046 - - -
3.6354 3570 0.0967 - - -
3.6456 3580 0.1335 - - -
3.6558 3590 0.1215 - - -
3.6660 3600 0.0984 - - -
3.6762 3610 0.1276 - - -
3.6864 3620 0.0759 - - -
3.6965 3630 0.0734 - - -
3.7067 3640 0.0656 - - -
3.7169 3650 0.0944 - - -
3.7271 3660 0.1141 - - -
3.7373 3670 0.1135 - - -
3.7475 3680 0.0833 - - -
3.7576 3690 0.0908 - - -
3.7678 3700 0.0852 - - -
3.7780 3710 0.072 - - -
3.7882 3720 0.1035 - - -
3.7984 3730 0.0579 - - -
3.8086 3740 0.0809 - - -
3.8187 3750 0.1014 - - -
3.8289 3760 0.0947 - - -
3.8391 3770 0.0592 - - -
3.8493 3780 0.072 - - -
3.8595 3790 0.0801 - - -
3.8697 3800 0.1166 - - -
3.8798 3810 0.1205 - - -
3.8900 3820 0.1044 - - -
3.9002 3830 0.0807 - - -
3.9104 3840 0.0959 - - -
3.9206 3850 0.0866 - - -
3.9308 3860 0.1051 - - -
3.9409 3870 0.089 - - -
3.9511 3880 0.097 - - -
3.9613 3890 0.0861 - - -
3.9715 3900 0.1038 - - -
3.9817 3910 0.1175 - - -
3.9919 3920 0.0888 - - -
4.0 3928 - 0.6797 0.6750 0.6617
4.0020 3930 0.1048 - - -
4.0122 3940 0.0775 - - -
4.0224 3950 0.0667 - - -
4.0326 3960 0.0708 - - -
4.0428 3970 0.0698 - - -
4.0530 3980 0.0872 - - -
4.0631 3990 0.0702 - - -
4.0733 4000 0.0666 - - -
4.0835 4010 0.0786 - - -
4.0937 4020 0.0903 - - -
4.1039 4030 0.0628 - - -
4.1141 4040 0.0623 - - -
4.1242 4050 0.0886 - - -
4.1344 4060 0.1011 - - -
4.1446 4070 0.0711 - - -
4.1548 4080 0.0805 - - -
4.1650 4090 0.0783 - - -
4.1752 4100 0.0909 - - -
4.1853 4110 0.0685 - - -
4.1955 4120 0.0785 - - -
4.2057 4130 0.0516 - - -
4.2159 4140 0.074 - - -
4.2261 4150 0.0493 - - -
4.2363 4160 0.0891 - - -
4.2464 4170 0.0623 - - -
4.2566 4180 0.0787 - - -
4.2668 4190 0.068 - - -
4.2770 4200 0.096 - - -
4.2872 4210 0.0763 - - -
4.2974 4220 0.0875 - - -
4.3075 4230 0.0804 - - -
4.3177 4240 0.0894 - - -
4.3279 4250 0.0647 - - -
4.3381 4260 0.0611 - - -
4.3483 4270 0.0879 - - -
4.3585 4280 0.0739 - - -
4.3686 4290 0.0568 - - -
4.3788 4300 0.0656 - - -
4.3890 4310 0.0831 - - -
4.3992 4320 0.0923 - - -
4.4094 4330 0.0914 - - -
4.4196 4340 0.054 - - -
4.4297 4350 0.0843 - - -
4.4399 4360 0.044 - - -
4.4501 4370 0.0925 - - -
4.4603 4380 0.0714 - - -
4.4705 4390 0.0846 - - -
4.4807 4400 0.0761 - - -
4.4908 4410 0.0713 - - -
4.5010 4420 0.0648 - - -
4.5112 4430 0.0727 - - -
4.5214 4440 0.118 - - -
4.5316 4450 0.079 - - -
4.5418 4460 0.0982 - - -
4.5519 4470 0.0665 - - -
4.5621 4480 0.0758 - - -
4.5723 4490 0.0916 - - -
4.5825 4500 0.08 - - -
4.5927 4510 0.0831 - - -
4.6029 4520 0.0774 - - -
4.6130 4530 0.0656 - - -
4.6232 4540 0.0741 - - -
4.6334 4550 0.0721 - - -
4.6436 4560 0.0523 - - -
4.6538 4570 0.0685 - - -
4.6640 4580 0.1186 - - -
4.6741 4590 0.0601 - - -
4.6843 4600 0.064 - - -
4.6945 4610 0.0821 - - -
4.7047 4620 0.0733 - - -
4.7149 4630 0.0717 - - -
4.7251 4640 0.0921 - - -
4.7352 4650 0.0906 - - -
4.7454 4660 0.0568 - - -
4.7556 4670 0.0835 - - -
4.7658 4680 0.0763 - - -
4.7760 4690 0.1066 - - -
4.7862 4700 0.0902 - - -
4.7963 4710 0.0736 - - -
4.8065 4720 0.0881 - - -
4.8167 4730 0.1248 - - -
4.8269 4740 0.0714 - - -
4.8371 4750 0.0621 - - -
4.8473 4760 0.0767 - - -
4.8574 4770 0.0979 - - -
4.8676 4780 0.0553 - - -
4.8778 4790 0.0802 - - -
4.8880 4800 0.1039 - - -
4.8982 4810 0.0625 - - -
4.9084 4820 0.1019 - - -
4.9185 4830 0.0786 - - -
4.9287 4840 0.0896 - - -
4.9389 4850 0.1061 - - -
4.9491 4860 0.0846 - - -
4.9593 4870 0.0626 - - -
4.9695 4880 0.0627 - - -
4.9796 4890 0.0881 - - -
4.9898 4900 0.0532 - - -
5.0 4910 0.1064 0.6819 0.6783 0.6637
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.4.1
  • Transformers: 4.49.0
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.2.1
  • Datasets: 3.3.2
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
6
Safetensors
Model size
27.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for yosefw/bert-amharic-embed-small-v4

Finetuned
(5)
this model

Evaluation results