File size: 4,453 Bytes
9d059f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb67f04
 
9d059f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
961d9a9
 
9d059f2
 
 
 
2d00617
9d059f2
 
 
 
 
eb67f04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d059f2
 
 
 
 
961d9a9
9d059f2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
license: cc-by-nc-4.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-ucf101-subset
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-finetuned-ucf101-subset

This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4171
- Accuracy: 0.9079

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 3750

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.3212        | 0.02  | 75   | 2.2295          | 0.2581   |
| 1.7775        | 1.02  | 150  | 1.7800          | 0.3871   |
| 1.0633        | 2.02  | 225  | 0.9655          | 0.5484   |
| 0.3783        | 3.02  | 300  | 0.5901          | 0.7419   |
| 0.756         | 4.02  | 375  | 0.9142          | 0.6774   |
| 0.5186        | 5.02  | 450  | 0.7384          | 0.7742   |
| 0.3714        | 6.02  | 525  | 1.1662          | 0.7742   |
| 0.0263        | 7.02  | 600  | 0.9102          | 0.8065   |
| 0.0848        | 8.02  | 675  | 0.1210          | 0.9355   |
| 0.0028        | 9.02  | 750  | 0.2374          | 0.9355   |
| 0.0863        | 10.02 | 825  | 0.1728          | 0.9677   |
| 0.0018        | 11.02 | 900  | 0.3043          | 0.9355   |
| 0.1662        | 12.02 | 975  | 0.4244          | 0.9032   |
| 0.0132        | 13.02 | 1050 | 0.6966          | 0.8710   |
| 0.0019        | 14.02 | 1125 | 0.5602          | 0.8710   |
| 0.0012        | 15.02 | 1200 | 0.2649          | 0.8710   |
| 0.0061        | 16.02 | 1275 | 0.7361          | 0.8710   |
| 0.0012        | 17.02 | 1350 | 0.2821          | 0.9355   |
| 0.001         | 18.02 | 1425 | 0.3117          | 0.9355   |
| 0.001         | 19.02 | 1500 | 0.1193          | 0.9677   |
| 0.0021        | 20.02 | 1575 | 0.2413          | 0.9355   |
| 0.0009        | 21.02 | 1650 | 0.1641          | 0.9677   |
| 0.0016        | 22.02 | 1725 | 0.1333          | 0.9677   |
| 0.0007        | 23.02 | 1800 | 0.1060          | 0.9677   |
| 0.0008        | 24.02 | 1875 | 0.1112          | 0.9677   |
| 0.0006        | 25.02 | 1950 | 0.0160          | 1.0      |
| 0.0006        | 26.02 | 2025 | 0.0291          | 0.9677   |
| 0.0006        | 27.02 | 2100 | 0.0860          | 0.9677   |
| 0.0005        | 28.02 | 2175 | 0.1080          | 0.9677   |
| 0.0006        | 29.02 | 2250 | 0.1120          | 0.9677   |
| 0.0006        | 30.02 | 2325 | 0.0593          | 0.9677   |
| 0.0005        | 31.02 | 2400 | 0.1660          | 0.9677   |
| 0.0005        | 32.02 | 2475 | 0.0454          | 0.9677   |
| 0.0007        | 33.02 | 2550 | 0.1015          | 0.9677   |
| 0.0005        | 34.02 | 2625 | 0.1712          | 0.9677   |
| 0.0005        | 35.02 | 2700 | 0.1600          | 0.9677   |
| 0.0004        | 36.02 | 2775 | 0.1618          | 0.9677   |
| 0.0004        | 37.02 | 2850 | 0.1468          | 0.9677   |
| 0.0004        | 38.02 | 2925 | 0.1167          | 0.9677   |
| 0.0004        | 39.02 | 3000 | 0.1278          | 0.9677   |
| 0.0004        | 40.02 | 3075 | 0.1200          | 0.9677   |
| 0.0004        | 41.02 | 3150 | 0.1200          | 0.9677   |
| 0.0004        | 42.02 | 3225 | 0.1230          | 0.9677   |
| 0.0004        | 43.02 | 3300 | 0.1323          | 0.9677   |
| 0.0004        | 44.02 | 3375 | 0.1283          | 0.9677   |
| 0.0004        | 45.02 | 3450 | 0.1330          | 0.9677   |
| 0.0004        | 46.02 | 3525 | 0.1341          | 0.9677   |
| 0.0004        | 47.02 | 3600 | 0.1305          | 0.9677   |
| 0.0004        | 48.02 | 3675 | 0.1309          | 0.9677   |
| 0.0004        | 49.02 | 3750 | 0.1304          | 0.9677   |


### Framework versions

- Transformers 4.24.0
- Pytorch 1.8.0+cu111
- Datasets 2.7.1
- Tokenizers 0.13.2