|
--- |
|
license: afl-3.0 |
|
language: |
|
- ja |
|
library_name: transformers |
|
pipeline_tag: text-classification |
|
--- |
|
# SMM4H-2024 Task 2 Japanese RE |
|
|
|
## Overview |
|
|
|
This is a relation extraction model created by fine-tuning [daisaku-s/medtxt_ner_roberta](https://huggingface.co/daisaku-s/medtxt_ner_roberta) on [SMM4H 2024 Task 2b](https://healthlanguageprocessing.org/smm4h-2024/) corpus. |
|
|
|
Tag set: |
|
* CAUSED |
|
* TREATMENT_FOR |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
import torch |
|
|
|
text = "銈点兂銉椼儷銉嗐偔銈广儓" |
|
model_name = "yseop/SMM4H2024_Task2b_ja" |
|
id2label = ['O', 'CAUSED', 'TREATMENT_FOR'] |
|
|
|
with torch.inference_mode(): |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name).eval() |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
encoded_input = tokenizer(text, return_tensors='pt', max_length=512) |
|
output = re_model(**encoded_input).logits |
|
class_id = output.argmax().item() |
|
print(id2label[class_id]) |
|
``` |
|
|
|
## Results |
|
|
|
|Relation|tp|fp|fn|precision|recall|f1| |
|
|---|---:|---:|---:|---:|---:|---:| |
|
|CAUSED\|DISORDER\|DISORDER|1|163|38|0.0061|0.0256|0.0099| |
|
|CAUSED\|DISORDER\|FUNCTION|0|70|13|0|0|0| |
|
|CAUSED\|DRUG\|DISORDER|9|196|105|0.0439|0.0789|0.0564| |
|
|CAUSED\|DRUG\|FUNCTION|2|59|7|0.0328|0.2222|0.0571| |
|
|TREATMENT_FOR\|DISORDER\|DISORDER|0|12|0|0|0|0| |
|
|TREATMENT_FOR\|DISORDER\|FUNCTION|0|3|0|0|0|0| |
|
|TREATMENT_FOR\|DRUG\|DISORDER|0|15|91|0|0|0| |
|
|TREATMENT_FOR\|DRUG\|FUNCTION|0|0|1|0|0|0| |
|
|all|12|518|255|0.0226|0.0449|0.0301| |