|
--- |
|
license: apache-2.0 |
|
language: |
|
- zh |
|
- en |
|
pipeline_tag: image-text-to-text |
|
--- |
|
## cite this model |
|
|
|
```bash |
|
@misc {yuanz_2024, |
|
author = { {yuanz} }, |
|
title = { llava_qwen15-4b-chat_openai-clip-vit-large-patch14-336 (Revision 5070a27) }, |
|
year = 2024, |
|
url = { https://huggingface.co/yuanzhoulvpi/llava_qwen15-4b-chat_openai-clip-vit-large-patch14-336 }, |
|
doi = { 10.57967/hf/3146 }, |
|
publisher = { Hugging Face } |
|
} |
|
``` |
|
|
|
# 从0到1训练一个定制版的llava模型 |
|
1. 基于openai/clip-vit-large-patch14-336 和Qwen1.5-4B-Chat模型,构建一个llava模型 |
|
2. 使用数据liuhaotian/LLaVA-CC3M-Pretrain-595K |
|
3. 训练方式是deepspeed-zero2、lora进行微调。 |
|
|
|
|
|
|
|
# 关联的github |
|
1. [https://github.com/yuanzhoulvpi2017/zero_nlp/tree/main/train_llava](https://github.com/yuanzhoulvpi2017/zero_nlp/tree/main/train_llava) |
|
|
|
|
|
|
|
# 关联的b站学习视频 |
|
|
|
1. 待填充 |
|
|
|
|
|
|
|
# 推理代码 |
|
|
|
|
|
```python |
|
|
|
from transformers import LlavaForConditionalGeneration, AutoProcessor |
|
import torch |
|
from PIL import Image |
|
``` |
|
|
|
```python |
|
|
|
raw_model_name_or_path = "yuanzhoulvpi/llava_qwen15-4b-chat_openai-clip-vit-large-patch14-336" |
|
model = LlavaForConditionalGeneration.from_pretrained(raw_model_name_or_path,device_map="cuda:0", torch_dtype=torch.bfloat16) |
|
processor = AutoProcessor.from_pretrained(raw_model_name_or_path) |
|
model.eval() |
|
print('ok') |
|
``` |
|
|
|
```python |
|
testdata = ( |
|
'<image>\nRelay a brief, clear account of the picture shown.', # 提问 |
|
'large kitchen island with an overhang and dining space next to it', # 真实答案 |
|
'data/liuhaotian/LLaVA-CC3M-Pretrain-595K/images_dl/GCC_train_001899387.jpg' # 图片路径 |
|
) |
|
|
|
``` |
|
|
|
|
|
```python |
|
def build_model_input(model, processor, testdata:tuple): |
|
messages = [ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": testdata[0]}, |
|
] |
|
prompt = processor.tokenizer.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
# print(prompt) |
|
# print("*"*20) |
|
image = Image.open(testdata[2]) |
|
inputs = processor(text=prompt, images=image, return_tensors="pt") |
|
|
|
for tk in inputs.keys(): |
|
inputs[tk] = inputs[tk].to(model.device) |
|
generate_ids = model.generate(**inputs, max_new_tokens=20) |
|
|
|
generate_ids = [ |
|
oid[len(iids):] for oid, iids in zip(generate_ids, inputs.input_ids) |
|
] |
|
|
|
|
|
|
|
gen_text = processor.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0] |
|
return gen_text |
|
|
|
|
|
|
|
``` |
|
|
|
```python |
|
build_model_input(model, processor, testdata) |
|
|
|
# 'the kitchen is a bright yellow with a glass top island and a large window that looks out to the' |
|
``` |
|
|
|
|