Tiny dummy models
Collection
Randomly initialized tiny models for debugging/testing purpose
•
61 items
•
Updated
•
3
This model is for debugging. It is randomly initialized using the config from ai21labs/AI21-Jamba-1.5-Large but with smaller size.
Codes:
import os
import torch
import transformers
from transformers import (AutoConfig, AutoModelForCausalLM, AutoTokenizer,
GenerationConfig, pipeline, set_seed)
model_id = 'ai21labs/AI21-Jamba-1.5-Large'
save_path = '/tmp/yujiepan/jamba-1.5-tiny-random'
repo_id = 'yujiepan/jamba-1.5-tiny-random'
config = transformers.AutoConfig.from_pretrained(
model_id, trust_remote_code=True)
config.hidden_size = 8
config.intermediate_size = 16
config.num_attention_heads = 4
config.num_hidden_layers = 16
config.num_key_value_heads = 2
# config.use_mamba_kernels = False
model = AutoModelForCausalLM.from_config(
config, torch_dtype=torch.bfloat16, attn_implementation="sdpa", trust_remote_code=True
)
set_seed(42)
with torch.no_grad():
for _, p in sorted(model.named_parameters()):
torch.nn.init.uniform_(p, -0.2, 0.2)
model.generation_config = GenerationConfig.from_pretrained(
model_id, trust_remote_code=True)
model.save_pretrained(save_path)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_id, trust_remote_code=True)
tokenizer.save_pretrained(save_path)
pipe = pipeline("text-generation", model=save_path, device="cuda",
trust_remote_code=True, max_new_tokens=20)
print(pipe("Hello World!"))