hubert-base-ls960-finetuned-gtzan

This model is a fine-tuned version of facebook/hubert-base-ls960 on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6527
  • Accuracy: 0.84

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1249 1.0 112 1.9377 0.43
1.6556 2.0 225 1.5867 0.47
1.2564 3.0 337 1.2670 0.56
1.0786 4.0 450 1.1080 0.59
0.895 5.0 562 0.8518 0.75
0.7177 6.0 675 1.0047 0.7
0.964 7.0 787 0.7430 0.75
0.4107 8.0 900 1.0347 0.71
0.4166 9.0 1012 0.5399 0.85
0.1234 10.0 1125 0.6266 0.83
0.0902 11.0 1237 0.6292 0.84
0.1211 12.0 1350 0.7393 0.84
0.4082 13.0 1462 0.6524 0.85
0.3442 14.0 1575 0.5732 0.86
0.0913 14.93 1680 0.6527 0.84

Framework versions

  • Transformers 4.31.0.dev0
  • Pytorch 1.13.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train yuval6967/hubert-base-ls960-finetuned-gtzan

Evaluation results