File size: 84,582 Bytes
5d7a143 84e7143 d099612 7a01238 5d7a143 13e6989 5d7a143 13e6989 5d7a143 e95c4a6 7a01238 13e6989 7a01238 84e7143 7a01238 f192b2c 8d8118b 72b250b a3e2e90 8d8118b 13e6989 72b250b 35cfafe 8d8118b ad9a9f8 8d8118b 2b7366f 8d8118b 2b7366f 4ee7532 2b7366f ad9a9f8 2b7366f e46628a 2b7366f 8d8118b 7a01238 84e7143 0672fb5 84e7143 f192b2c 0672fb5 410f9a9 0672fb5 84e7143 44c38ef 0672fb5 84e7143 f192b2c c995392 faa61f9 c995392 f192b2c c995392 faa61f9 2f9c026 8d8118b d099612 e49ada4 d099612 0672fb5 84e7143 faa61f9 84e7143 faa61f9 c4cc548 faa61f9 7a01238 13e6989 7a01238 f192b2c 7a01238 13e6989 7a01238 f192b2c 7a01238 0672fb5 7a01238 0672fb5 7a01238 f192b2c 7a01238 f192b2c 7a01238 0672fb5 7a01238 13e6989 7a01238 f192b2c 7a01238 13e6989 7a01238 f192b2c 7a01238 c995392 7a01238 f192b2c 7a01238 f192b2c 7a01238 f192b2c 7a01238 f192b2c 7a01238 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 |
from transformers import PreTrainedModel, PretrainedConfig
import numpy as np
import monai.transforms as transforms
import nibabel as nib
class SegVolConfig(PretrainedConfig):
model_type = "segvol"
def __init__(
self,
test_mode=True,
clip_model='openai/clip-vit-base-patch32',
**kwargs,
):
self.spatial_size = [32, 256, 256]
self.patch_size = [4, 16, 16]
self.test_mode = test_mode
self.clip_model = clip_model
super().__init__(**kwargs)
class SegVolModel(PreTrainedModel):
config_class = SegVolConfig
def __init__(self, config):
super().__init__(config)
sam_model = _build_sam(
image_encoder_type='vit',
embed_dim = 768,
patch_size=self.config.patch_size,
checkpoint=None,
image_size=self.config.spatial_size,
)
self.model = SegVol(
image_encoder=sam_model.image_encoder,
mask_decoder=sam_model.mask_decoder,
prompt_encoder=sam_model.prompt_encoder,
roi_size=self.config.spatial_size,
patch_size=self.config.patch_size,
clip_model=self.config.clip_model,
test_mode=self.config.test_mode,
)
self.processor = SegVolProcessor(spatial_size=self.config.spatial_size)
self.custom_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def forward_test(self,
image,
zoomed_image=None,
text_prompt=None,
bbox_prompt_group=None,
point_prompt_group=None,
use_zoom=True):
assert image.shape[0] == 1 and zoomed_image.shape[0] == 1, 'batch size should be 1'
assert not (text_prompt is None and bbox_prompt_group is None and point_prompt_group is None), 'Drive SegVol using at least one type of prompt'
bbox_prompt, bbox_prompt_map, point_prompt, point_prompt_map=None, None, None, None
if bbox_prompt_group is not None:
bbox_prompt, bbox_prompt_map = bbox_prompt_group
if point_prompt_group is not None:
point_prompt, point_prompt_map = point_prompt_group
volume_shape = image[0][0].shape
with torch.no_grad():
logits_global_single = self.model(zoomed_image,
text=text_prompt,
boxes=bbox_prompt,
points=point_prompt)
logits_global_single = F.interpolate(
logits_global_single.cpu(),
size=volume_shape, mode='nearest')
if not use_zoom:
return logits_global_single
if point_prompt_map is not None:
binary_points = F.interpolate(
point_prompt_map.float(),
size=volume_shape, mode='nearest')
if bbox_prompt_map is not None:
binary_cube = F.interpolate(
bbox_prompt_map.float(),
size=volume_shape, mode='nearest')
min_d, min_h, min_w, max_d, max_h, max_w = logits2roi_coor(self.config.spatial_size, logits_global_single[0][0])
if min_d is None:
print('Fail to detect foreground!')
return logits_global_single
# Crop roi
image_single_cropped = image[:, :, min_d:max_d+1, min_h:max_h+1, min_w:max_w+1]
global_preds = (torch.sigmoid(logits_global_single[:, :, min_d:max_d+1, min_h:max_h+1, min_w:max_w+1])>0.5).long()
assert not (bbox_prompt is not None and point_prompt is not None), 'Do not use point prompt and box prompt at the same time.'
prompt_reflection = None
if bbox_prompt is not None:
binary_cube_cropped = binary_cube[:, :, min_d:max_d+1, min_h:max_h+1, min_w:max_w+1]
prompt_reflection = (
binary_cube_cropped,
global_preds
)
if point_prompt is not None:
binary_points_cropped = binary_points[:, :, min_d:max_d+1, min_h:max_h+1, min_w:max_w+1]
prompt_reflection = (
binary_points_cropped,
global_preds
)
## inference
with torch.no_grad():
logits_single_cropped = sliding_window_inference(
image_single_cropped.to(self.custom_device), prompt_reflection,
self.config.spatial_size, 1, self.model, 0.5,
text=text_prompt,
use_box=bbox_prompt is not None,
use_point=point_prompt is not None,
)
logits_single_cropped = logits_single_cropped.cpu().squeeze()
logits_global_single[:, :, min_d:max_d+1, min_h:max_h+1, min_w:max_w+1] = logits_single_cropped
return logits_global_single
# processor
class SegVolProcessor():
def __init__(self, spatial_size) -> None:
self.img_loader = transforms.LoadImage()
self.transform4test = transforms.Compose(
[
ForegroundNormalization(keys=["image"]),
DimTranspose(keys=["image", "label"]),
MinMaxNormalization(),
transforms.CropForegroundd(keys=["image", "label"], source_key="image"),
transforms.ToTensord(keys=["image", "label"]),
]
)
self.zoom_out_transform = transforms.Resized(keys=["image", "label"], spatial_size=spatial_size, mode='nearest-exact')
self.custom_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.transform4train = transforms.Compose(
[
# transforms.AddChanneld(keys=["image"]),
DimTranspose(keys=["image", "label"]),
MinMaxNormalization(),
transforms.CropForegroundd(keys=["image", "label"], source_key="image"),
transforms.SpatialPadd(keys=["image", "label"], spatial_size=spatial_size, mode='constant'),
transforms.OneOf(transforms=[
transforms.Resized(keys=["image", "label"],spatial_size=spatial_size),
transforms.RandCropByPosNegLabeld(
keys=["image", "label"],
label_key="label",
spatial_size=spatial_size,
pos=5,
neg=1,
num_samples=1,
image_key="image",
image_threshold=0,
),
],
weights=[1, 3]
),
transforms.RandFlipd(keys=["image", "label"], prob=0.2, spatial_axis=0),
transforms.RandFlipd(keys=["image", "label"], prob=0.2, spatial_axis=1),
transforms.RandFlipd(keys=["image", "label"], prob=0.2, spatial_axis=2),
transforms.RandScaleIntensityd(keys="image", factors=0.2, prob=0.2),
transforms.RandShiftIntensityd(keys="image", offsets=0.2, prob=0.2),
transforms.ToTensord(keys=["image", "label"]),
]
)
# ct_path is path for a ct scan file with nii.gz format
# gt_path is path for a ground truth file with nii.gz format
def preprocess_ct_gt(self, ct_path, gt_path, category):
item = {}
# generate ct_voxel_ndarray
ct_voxel_ndarray, _ = self.img_loader(ct_path)
ct_voxel_ndarray = np.array(ct_voxel_ndarray).squeeze()
ct_shape = ct_voxel_ndarray.shape
ct_voxel_ndarray = np.expand_dims(ct_voxel_ndarray, axis=0)
item['image'] = ct_voxel_ndarray
# generate gt_voxel_ndarray
gt_voxel_ndarray, _ = self.img_loader(gt_path)
gt_voxel_ndarray = np.array(gt_voxel_ndarray)
present_categories = np.unique(gt_voxel_ndarray)
gt_masks = []
for cls_idx in range(len(category)):
# ignore background
cls = cls_idx + 1
if cls not in present_categories:
gt_voxel_ndarray_category = np.zeros(ct_shape)
gt_masks.append(gt_voxel_ndarray_category)
else:
gt_voxel_ndarray_category = gt_voxel_ndarray.copy()
gt_voxel_ndarray_category[gt_voxel_ndarray != cls] = 0
gt_voxel_ndarray_category[gt_voxel_ndarray == cls] = 1
gt_masks.append(gt_voxel_ndarray_category)
gt_voxel_ndarray = np.stack(gt_masks, axis=0)
assert gt_voxel_ndarray.shape[0] == len(category) and gt_voxel_ndarray.shape[1:] == ct_voxel_ndarray.shape[1:]
item['label'] = gt_voxel_ndarray.astype(np.int32)
# transform
return item['image'], item['label']
def zoom_transform(self, ct_npy, gt_npy):
item = {
'image': ct_npy,
'label': gt_npy
}
item = self.transform4test(item)
item_zoom_out = self.zoom_out_transform(item)
item['zoom_out_image'] = item_zoom_out['image']
item['zoom_out_label'] = item_zoom_out['label']
return item
def point_prompt_b(self, label_single_resize, num_positive_extra=4, num_negative_extra=0):
point, point_label = select_points(label_single_resize, num_positive_extra=num_positive_extra, num_negative_extra=num_negative_extra)
points_single = (point.unsqueeze(0).float().to(self.custom_device), point_label.unsqueeze(0).float().to(self.custom_device))
binary_points_resize = build_binary_points(point, point_label, label_single_resize.shape).unsqueeze(0).unsqueeze(0)
return points_single, binary_points_resize
def bbox_prompt_b(self, label_single_resize):
box_single = generate_box(label_single_resize).unsqueeze(0).float().to(self.custom_device)
binary_cube_resize = build_binary_cube(box_single, binary_cube_shape=label_single_resize.shape).unsqueeze(0).unsqueeze(0)
return box_single, binary_cube_resize
def dice_score(self, preds, labels):
assert preds.shape[0] == labels.shape[0], "predict & target batch size don't match\n" + str(preds.shape) + str(labels.shape)
predict = preds.view(1, -1)
target = labels.view(1, -1)
if target.shape[1] < 1e8:
predict = predict.to(self.custom_device)
target = target.to(self.custom_device)
predict = torch.sigmoid(predict)
predict = torch.where(predict > 0.5, 1., 0.)
tp = torch.sum(torch.mul(predict, target))
den = torch.sum(predict) + torch.sum(target) + 1
dice = 2 * tp / den
if target.shape[1] < 1e8:
predict = predict.cpu()
target = target.cpu()
return dice
def save_preds(self, ct_path, save_path, logits_mask, start_coord, end_coord):
ct = nib.load(ct_path)
logits_mask = logits_mask.transpose(-1, -3)
start_coord[-1], start_coord[-3] = start_coord[-3], start_coord[-1]
end_coord[-1], end_coord[-3] = end_coord[-3], end_coord[-1]
preds_save = torch.zeros(ct.shape)
preds_save[start_coord[0]:end_coord[0],
start_coord[1]:end_coord[1],
start_coord[2]:end_coord[2]] = torch.sigmoid(logits_mask)
preds_save = torch.where(preds_save > 0.5, 1., 0.).numpy()
preds_nii = nib.Nifti1Image(preds_save, affine=ct.affine, header=ct.header)
nib.save(preds_nii, save_path)
def train_transform(self, ct_npy, gt_npy):
item = {
'image': ct_npy,
'label': gt_npy
}
item = self.transform4train(item)
if type(item) is list:
assert len(item) == 1
item = item[0]
return item
class MinMaxNormalization(transforms.Transform):
def __call__(self, data):
d = dict(data)
k = "image"
d[k] = d[k] - d[k].min()
d[k] = d[k] / np.clip(d[k].max(), a_min=1e-8, a_max=None)
return d
class DimTranspose(transforms.Transform):
def __init__(self, keys):
self.keys = keys
def __call__(self, data):
d = dict(data)
for key in self.keys:
d[key] = np.swapaxes(d[key], -1, -3)
return d
class ForegroundNormalization(transforms.Transform):
def __init__(self, keys):
self.keys = keys
def __call__(self, data):
d = dict(data)
for key in self.keys:
d[key] = self.normalize(d[key])
return d
def normalize(self, ct_narray):
ct_voxel_ndarray = ct_narray.copy()
ct_voxel_ndarray = ct_voxel_ndarray.flatten()
thred = np.mean(ct_voxel_ndarray)
voxel_filtered = ct_voxel_ndarray[(ct_voxel_ndarray > thred)]
upper_bound = np.percentile(voxel_filtered, 99.95)
lower_bound = np.percentile(voxel_filtered, 00.05)
mean = np.mean(voxel_filtered)
std = np.std(voxel_filtered)
### transform ###
ct_narray = np.clip(ct_narray, lower_bound, upper_bound)
ct_narray = (ct_narray - mean) / max(std, 1e-8)
return ct_narray
# prompts
def generate_box(pred_pre, bbox_shift=None):
meaning_post_label = pred_pre # [h, w, d]
ones_idx = (meaning_post_label > 0).nonzero(as_tuple=True)
if all(tensor.nelement() == 0 for tensor in ones_idx):
bboxes = torch.tensor([-1,-1,-1,-1,-1,-1])
# print(bboxes, bboxes.shape)
return bboxes
min_coords = [dim.min() for dim in ones_idx] # [x_min, y_min, z_min]
max_coords = [dim.max() for dim in ones_idx] # [x_max, y_max, z_max]
if bbox_shift is None:
corner_min = []
corner_max = []
shape = meaning_post_label.shape
for coor in min_coords:
coor_ = max(0, coor)
corner_min.append(coor_)
for idx, coor in enumerate(max_coords):
coor_ = min(shape[idx], coor)
corner_max.append(coor_)
corner_min = torch.tensor(corner_min)
corner_max = torch.tensor(corner_max)
return torch.cat((corner_min, corner_max), dim=0)
else:
# add perturbation to bounding box coordinates
corner_min = []
corner_max = []
shape = meaning_post_label.shape
for coor in min_coords:
coor_ = max(0, coor + random.randint(-bbox_shift, bbox_shift))
corner_min.append(coor_)
for idx, coor in enumerate(max_coords):
coor_ = min(shape[idx], coor + random.randint(-bbox_shift, bbox_shift))
corner_max.append(coor_)
corner_min = torch.tensor(corner_min)
corner_max = torch.tensor(corner_max)
return torch.cat((corner_min, corner_max), dim=0)
def select_points(preds, num_positive_extra=4, num_negative_extra=0, fix_extra_point_num=None):
spacial_dim = 3
points = torch.zeros((0, 3))
labels = torch.zeros((0))
pos_thred = 0.9
neg_thred = 0.1
# get pos/net indices
positive_indices = torch.nonzero(preds > pos_thred, as_tuple=True) # ([pos x], [pos y], [pos z])
negative_indices = torch.nonzero(preds < neg_thred, as_tuple=True)
ones_idx = (preds > pos_thred).nonzero(as_tuple=True)
if all(tmp.nelement() == 0 for tmp in ones_idx):
# all neg
num_positive_extra = 0
selected_positive_point = torch.tensor([-1,-1,-1]).unsqueeze(dim=0)
points = torch.cat((points, selected_positive_point), dim=0)
labels = torch.cat((labels, torch.tensor([-1]).reshape(1)))
else:
# random select a pos point
random_idx = torch.randint(len(positive_indices[0]), (1,))
selected_positive_point = torch.tensor([positive_indices[i][random_idx] for i in range(spacial_dim)]).unsqueeze(dim=0)
points = torch.cat((points, selected_positive_point), dim=0)
labels = torch.cat((labels, torch.ones((1))))
if num_positive_extra > 0:
pos_idx_list = torch.randperm(len(positive_indices[0]))[:num_positive_extra]
extra_positive_points = []
for pos_idx in pos_idx_list:
extra_positive_points.append([positive_indices[i][pos_idx] for i in range(spacial_dim)])
extra_positive_points = torch.tensor(extra_positive_points).reshape(-1, 3)
points = torch.cat((points, extra_positive_points), dim=0)
labels = torch.cat((labels, torch.ones((extra_positive_points.shape[0]))))
if num_negative_extra > 0:
neg_idx_list = torch.randperm(len(negative_indices[0]))[:num_negative_extra]
extra_negative_points = []
for neg_idx in neg_idx_list:
extra_negative_points.append([negative_indices[i][neg_idx] for i in range(spacial_dim)])
extra_negative_points = torch.tensor(extra_negative_points).reshape(-1, 3)
points = torch.cat((points, extra_negative_points), dim=0)
labels = torch.cat((labels, torch.zeros((extra_negative_points.shape[0]))))
# print('extra_negative_points ', extra_negative_points, extra_negative_points.shape)
# print('==> points ', points.shape, labels)
if fix_extra_point_num is None:
left_point_num = num_positive_extra + num_negative_extra + 1 - labels.shape[0]
else:
left_point_num = fix_extra_point_num + 1 - labels.shape[0]
for _ in range(left_point_num):
ignore_point = torch.tensor([-1,-1,-1]).unsqueeze(dim=0)
points = torch.cat((points, ignore_point), dim=0)
labels = torch.cat((labels, torch.tensor([-1]).reshape(1)))
return points, labels
# SegVol
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from transformers import AutoTokenizer, CLIPTextModel, CLIPTextConfig
import random
#%% set up model
class SegVol(nn.Module):
def __init__(self,
image_encoder,
mask_decoder,
prompt_encoder,
roi_size,
patch_size,
clip_model,
test_mode=False,
):
super().__init__()
self.custom_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.image_encoder = image_encoder
self.mask_decoder = mask_decoder
self.prompt_encoder = prompt_encoder
self.text_encoder = TextEncoder(clip_model)
self.feat_shape = np.array(roi_size)/np.array(patch_size)
self.test_mode = test_mode
self.dice_loss = BinaryDiceLoss().to(self.custom_device)
self.bce_loss = BCELoss().to(self.custom_device)
self.decoder_iter = 6
def forward(self, image, text=None, boxes=None, points=None, **kwargs):
bs = image.shape[0]
img_shape = (image.shape[2], image.shape[3], image.shape[4])
image_embedding, _ = self.image_encoder(image)
image_embedding = image_embedding.transpose(1, 2).view(bs, -1,
int(self.feat_shape[0]), int(self.feat_shape[1]), int(self.feat_shape[2]))
# test mode
if self.test_mode:
return self.forward_decoder(image_embedding, img_shape, text, boxes, points)
# train mode
## sl
sl_loss = self.supervised_forward(image, image_embedding, img_shape, kwargs['train_organs'], kwargs['train_labels'])
## ssl
# ssl_loss = self.unsupervised_forward(image, image_embedding, kwargs['pseudo_seg_cleaned'], img_shape)
return sl_loss
def forward_decoder(self, image_embedding, img_shape, text=None, boxes=None, points=None):
with torch.no_grad():
if boxes is not None:
if len(boxes.shape) == 2:
boxes = boxes[:, None, :] # (B, 1, 6)
if text is not None:
text_embedding = self.text_encoder(text) # (B, 768)
else:
text_embedding = None
sparse_embeddings, dense_embeddings = self.prompt_encoder(
points=points,
boxes=boxes,
masks=None,
text_embedding=text_embedding,
)
dense_pe = self.prompt_encoder.get_dense_pe()
low_res_masks, _ = self.mask_decoder(
image_embeddings=image_embedding,
text_embedding = text_embedding,
image_pe=dense_pe,
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=False,
)
logits = F.interpolate(low_res_masks, size=img_shape, mode='trilinear', align_corners=False)
return logits
def supervised_forward(self, image, image_embedding, img_shape, training_organs, train_labels):
iter_points, iter_bboxes, iter_organs = self.build_prompt_label(image.shape[0], training_organs, train_labels)
# select prompt
prompt_options = [[None, iter_points, iter_organs], [iter_bboxes, None, iter_organs],
[None, None, iter_organs], [iter_bboxes, None, None], [None, iter_points, None],
[iter_bboxes, iter_points, None]]
sl_loss = 0
for prompt in prompt_options:
bboxes, points, organs = prompt
logits = self.forward_decoder(image_embedding, img_shape, text=organs, boxes=bboxes, points=points)
# cal loss
sl_loss_dice = self.dice_loss.forward(logits.squeeze().float(), train_labels.squeeze().float())
sl_loss_bce = self.bce_loss.forward(logits.squeeze().float(), train_labels.squeeze().float())
sl_loss += sl_loss_dice + sl_loss_bce
return sl_loss
# def unsupervised_forward(self, image, image_embedding, pseudo_seg_cleaned, img_shape):
# sll_loss = 0
# for iter in range(self.decoder_iter):
# if iter % 2 == 0:
# pseudo_labels, pseudo_points_prompt = self.build_pseudo_point_prompt_label(image.shape, pseudo_seg_cleaned)
# logits = self.forward_decoder(image_embedding, img_shape, text=None, boxes=None, points=pseudo_points_prompt)
# else:
# pseudo_labels, pseudo_bboxes_prompt = self.build_pseudo_box_prompt_label(image.shape, pseudo_seg_cleaned)
# logits = self.forward_decoder(image_embedding, img_shape, text=None, boxes=pseudo_bboxes_prompt, points=None)
# # cal loss
# sll_loss_dice = self.dice_loss.forward(logits.squeeze().float(), pseudo_labels.squeeze().float())
# sll_loss_bce = self.bce_loss.forward(logits.squeeze().float(), pseudo_labels.squeeze().float())
# sll_loss += sll_loss_dice + sll_loss_bce
# return sll_loss
def build_prompt_label(self, bs, training_organs, train_labels):
# generate prompt & label
iter_organs = []
iter_bboxes = []
iter_points_ax = []
iter_point_labels = []
for sample_idx in range(bs):
# organ prompt
iter_organs.append(training_organs)
# box prompt
box = generate_box(train_labels[sample_idx])
iter_bboxes.append(box)
# point prompt
num_positive_extra_max, num_negative_extra_max = 10, 10
num_positive_extra = random.randint(0, num_positive_extra_max)
num_negative_extra = random.randint(0, num_negative_extra_max)
point, point_label = select_points(
train_labels[sample_idx],
num_positive_extra=num_positive_extra,
num_negative_extra=num_negative_extra,
fix_extra_point_num=num_positive_extra_max + num_negative_extra_max)
iter_points_ax.append(point)
iter_point_labels.append(point_label)
# batched prompt
iter_points_ax = torch.stack(iter_points_ax, dim=0).to(self.custom_device)
iter_point_labels = torch.stack(iter_point_labels, dim=0).to(self.custom_device)
iter_points = (iter_points_ax, iter_point_labels)
iter_bboxes = torch.stack(iter_bboxes, dim=0).float().to(self.custom_device)
return iter_points, iter_bboxes, iter_organs
# def build_pseudo_point_prompt_label(self, input_shape, seg_labels):
# pseudo_labels = torch.zeros(input_shape).to(self.custom_device)
# # generate points
# points = []
# point_labels = []
# for batch_idx in range(input_shape[0]):
# # generate pseudo label
# unique_ids = torch.unique(seg_labels[batch_idx])
# unique_ids = unique_ids[unique_ids != -1]
# region_id = random.choice(unique_ids).item()
# pseudo_labels[batch_idx][seg_labels[batch_idx]==region_id] = 1
# # generate point prompt
# num_positive_extra_max, num_negative_extra_max = 10, 10
# num_positive_extra = random.randint(4, num_positive_extra_max)
# num_negative_extra = random.randint(0, num_negative_extra_max)
# assert len(pseudo_labels[batch_idx][0].shape) == 3
# point, point_label = select_points(
# pseudo_labels[batch_idx][0],
# num_positive_extra=num_positive_extra,
# num_negative_extra=num_negative_extra,
# fix_extra_point_num=num_positive_extra_max + num_negative_extra_max)
# points.append(point)
# point_labels.append(point_label)
# points = torch.stack(points, dim=0).to(self.custom_device)
# point_labels = torch.stack(point_labels, dim=0).to(self.custom_device)
# pseudo_points_prompt = (points, point_labels)
# return pseudo_labels, pseudo_points_prompt
# def build_pseudo_box_prompt_label(self, input_shape, seg_labels_cleaned):
# pseudo_labels = torch.zeros(input_shape).to(self.custom_device)
# iter_bboxes = []
# # generate boxes
# for batch_idx in range(input_shape[0]):
# # generate ori pseudo label
# unique_ids = torch.unique(seg_labels_cleaned[batch_idx])
# unique_ids = unique_ids[unique_ids != -1]
# region_id = random.choice(unique_ids).item()
# pseudo_labels[batch_idx][seg_labels_cleaned[batch_idx]==region_id] = 1
# # generate box prompt
# box = generate_box(pseudo_labels[batch_idx][0])
# iter_bboxes.append(box)
# # refine pseudo label
# x_min, y_min, z_min, x_max, y_max, z_max = box
# binary_cube = torch.zeros_like(pseudo_labels[batch_idx][0]).int()
# binary_cube[x_min:x_max+1, y_min:y_max+1, z_min:z_max+1] = 1
# # cal iou
# mask_label = seg_labels_cleaned[batch_idx][0]
# assert binary_cube.shape == mask_label.shape, str(binary_cube.shape) + ' ' + str(mask_label.shape)
# mask_values_in_binary_cube = mask_label[binary_cube == 1]
# unique_mask_values = torch.unique(mask_values_in_binary_cube)
# # print('unique_mask_values ', unique_mask_values)
# for value in unique_mask_values:
# if value == -1: continue
# mask_area = (mask_label == value)
# intersection = (binary_cube & mask_area)
# iou = intersection.float().sum() / mask_area.float().sum()
# if iou > 0.90:
# # print(f"Mask value {value} has IOU > 0.90 in binary cube.")
# pseudo_labels[batch_idx][seg_labels_cleaned[batch_idx]==value] = 1
# bboxes = torch.stack(iter_bboxes, dim=0).float().to(self.custom_device)
# return pseudo_labels, bboxes
class TextEncoder(nn.Module):
def __init__(self, clip_model):
super().__init__()
self.custom_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
config = CLIPTextConfig()
self.clip_text_model = CLIPTextModel(config)
self.tokenizer = AutoTokenizer.from_pretrained(clip_model)
self.dim_align = nn.Linear(512, 768)
# freeze text encoder
for param in self.clip_text_model.parameters():
param.requires_grad = False
def organ2tokens(self, organ_names):
text_list = ['A computerized tomography of a {}.'.format(organ_name) for organ_name in organ_names]
tokens = self.tokenizer(text_list, padding=True, return_tensors="pt")
for key in tokens.keys():
tokens[key] = tokens[key].to(self.custom_device)
return tokens
def forward(self, text):
if text is None:
return None
if type(text) is str:
# text is supposed to be list
text = [text]
tokens = self.organ2tokens(text)
clip_outputs = self.clip_text_model(**tokens)
text_embedding = clip_outputs.pooler_output
text_embedding = self.dim_align(text_embedding)
return text_embedding
# loss
import torch
import torch.nn as nn
class BinaryDiceLoss(nn.Module):
def __init__(self, smooth=1, p=2, reduction='mean'):
super(BinaryDiceLoss, self).__init__()
self.smooth = smooth
self.p = p
self.reduction = reduction
def forward(self, predict, target):
predict = torch.sigmoid(predict)
target_ = target.clone()
target_[target == -1] = 0
assert predict.shape[0] == target.shape[0], "predict & target batch size don't match\n" + str(predict.shape) + '\n' + str(target.shape[0])
predict = predict.contiguous().view(predict.shape[0], -1)
target_ = target_.contiguous().view(target_.shape[0], -1)
num = torch.sum(torch.mul(predict, target_), dim=1)
den = torch.sum(predict, dim=1) + torch.sum(target_, dim=1) + self.smooth
dice_score = 2*num / den
dice_loss = 1 - dice_score
# dice_loss_avg = dice_loss[target[:,0]!=-1].sum() / dice_loss[target[:,0]!=-1].shape[0]
dice_loss_avg = dice_loss.sum() / dice_loss.shape[0]
return dice_loss_avg
class BCELoss(nn.Module):
def __init__(self):
super(BCELoss, self).__init__()
self.criterion = nn.BCEWithLogitsLoss()
def forward(self, predict, target):
assert predict.shape == target.shape, 'predict & target shape do not match\n' + str(predict.shape) + '\n' + str(target.shape)
target_ = target.clone()
target_[target == -1] = 0
ce_loss = self.criterion(predict, target_)
return ce_loss
# monai inference
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import Any, Callable, Dict, List, Mapping, Sequence, Tuple, Union
import torch
import torch.nn.functional as F
import random
from monai.data.utils import compute_importance_map, dense_patch_slices, get_valid_patch_size
from monai.transforms import Resize
from monai.utils import (
BlendMode,
PytorchPadMode,
convert_data_type,
ensure_tuple,
fall_back_tuple,
look_up_option,
optional_import,
)
tqdm, _ = optional_import("tqdm", name="tqdm")
__all__ = ["sliding_window_inference"]
def logits2roi_coor(spatial_size, logits_global_single):
# crop predict
pred_global_single = torch.sigmoid(logits_global_single) > 0.5
## get all pos idx
nonzero_indices = torch.nonzero(pred_global_single)
if nonzero_indices.shape[0] == 0:
return None, None, None, None, None, None
## get boundary
min_d, max_d = nonzero_indices[:, 0].min(), nonzero_indices[:, 0].max()
min_h, max_h = nonzero_indices[:, 1].min(), nonzero_indices[:, 1].max()
min_w, max_w = nonzero_indices[:, 2].min(), nonzero_indices[:, 2].max()
## padding
crop_d, crop_h, crop_w = max_d - min_d + 1, max_h - min_h + 1, max_w - min_w + 1,
window_d, window_h, window_w = spatial_size
padding_d, padding_h, padding_w = max(0, window_d-crop_d), max(0, window_h-crop_h), max(0, window_w-crop_w)
global_d, global_h, global_w = logits_global_single.shape
min_d = max(0, min_d - int(padding_d)//2)
min_h = max(0, min_h - int(padding_h)//2)
min_w = max(0, min_w - int(padding_w)//2)
max_d = min(global_d, max_d + int(padding_d)//2)
max_h = min(global_h, max_h + int(padding_h)//2)
max_w = min(global_w, max_w + int(padding_w)//2)
return min_d, min_h, min_w, max_d, max_h, max_w
def build_binary_cube(bbox, binary_cube_shape):
min_coord = bbox[0][:3].int().tolist()
max_coord = bbox[0][3:].int().tolist()
binary_cube = torch.zeros(binary_cube_shape)
binary_cube[min_coord[0]:max_coord[0]+1, min_coord[1]:max_coord[1]+1, min_coord[2]:max_coord[2]+1] = 1
return binary_cube
def build_binary_points(points, labels, shape):
binary_points = torch.zeros(shape, dtype=torch.int16)
binary_points[points[labels == 1, 0].long(), points[labels == 1, 1].long(), points[labels == 1, 2].long()] = 1
return binary_points
def sliding_window_inference(
inputs: torch.Tensor,
prompt_reflection: Union[torch.Tensor, Tuple[torch.Tensor, ...]],
roi_size: Union[Sequence[int], int],
sw_batch_size: int,
predictor: Callable[..., Union[torch.Tensor, Sequence[torch.Tensor], Dict[Any, torch.Tensor]]],
overlap: float = 0.25,
mode: Union[BlendMode, str] = BlendMode.CONSTANT,
sigma_scale: Union[Sequence[float], float] = 0.125,
padding_mode: Union[PytorchPadMode, str] = PytorchPadMode.CONSTANT,
cval: float = 0.0,
sw_device: Union[torch.device, str, None] = None,
device: Union[torch.device, str, None] = None,
progress: bool = False,
roi_weight_map: Union[torch.Tensor, None] = None,
*args: Any,
**kwargs: Any,
) -> Union[torch.Tensor, Tuple[torch.Tensor, ...], Dict[Any, torch.Tensor]]:
"""
Sliding window inference on `inputs` with `predictor`.
The outputs of `predictor` could be a tensor, a tuple, or a dictionary of tensors.
Each output in the tuple or dict value is allowed to have different resolutions with respect to the input.
e.g., the input patch spatial size is [128,128,128], the output (a tuple of two patches) patch sizes
could be ([128,64,256], [64,32,128]).
In this case, the parameter `overlap` and `roi_size` need to be carefully chosen to ensure the output ROI is still
an integer. If the predictor's input and output spatial sizes are not equal, we recommend choosing the parameters
so that `overlap*roi_size*output_size/input_size` is an integer (for each spatial dimension).
When roi_size is larger than the inputs' spatial size, the input image are padded during inference.
To maintain the same spatial sizes, the output image will be cropped to the original input size.
Args:
inputs: input image to be processed (assuming NCHW[D])
roi_size: the spatial window size for inferences.
When its components have None or non-positives, the corresponding inputs dimension will be used.
if the components of the `roi_size` are non-positive values, the transform will use the
corresponding components of img size. For example, `roi_size=(32, -1)` will be adapted
to `(32, 64)` if the second spatial dimension size of img is `64`.
sw_batch_size: the batch size to run window slices.
predictor: given input tensor ``patch_data`` in shape NCHW[D],
The outputs of the function call ``predictor(patch_data)`` should be a tensor, a tuple, or a dictionary
with Tensor values. Each output in the tuple or dict value should have the same batch_size, i.e. NM'H'W'[D'];
where H'W'[D'] represents the output patch's spatial size, M is the number of output channels,
N is `sw_batch_size`, e.g., the input shape is (7, 1, 128,128,128),
the output could be a tuple of two tensors, with shapes: ((7, 5, 128, 64, 256), (7, 4, 64, 32, 128)).
In this case, the parameter `overlap` and `roi_size` need to be carefully chosen
to ensure the scaled output ROI sizes are still integers.
If the `predictor`'s input and output spatial sizes are different,
we recommend choosing the parameters so that ``overlap*roi_size*zoom_scale`` is an integer for each dimension.
overlap: Amount of overlap between scans.
mode: {``"constant"``, ``"gaussian"``}
How to blend output of overlapping windows. Defaults to ``"constant"``.
- ``"constant``": gives equal weight to all predictions.
- ``"gaussian``": gives less weight to predictions on edges of windows.
sigma_scale: the standard deviation coefficient of the Gaussian window when `mode` is ``"gaussian"``.
Default: 0.125. Actual window sigma is ``sigma_scale`` * ``dim_size``.
When sigma_scale is a sequence of floats, the values denote sigma_scale at the corresponding
spatial dimensions.
padding_mode: {``"constant"``, ``"reflect"``, ``"replicate"``, ``"circular"``}
Padding mode for ``inputs``, when ``roi_size`` is larger than inputs. Defaults to ``"constant"``
See also: https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html
cval: fill value for 'constant' padding mode. Default: 0
sw_device: device for the window data.
By default the device (and accordingly the memory) of the `inputs` is used.
Normally `sw_device` should be consistent with the device where `predictor` is defined.
device: device for the stitched output prediction.
By default the device (and accordingly the memory) of the `inputs` is used. If for example
set to device=torch.device('cpu') the gpu memory consumption is less and independent of the
`inputs` and `roi_size`. Output is on the `device`.
progress: whether to print a `tqdm` progress bar.
roi_weight_map: pre-computed (non-negative) weight map for each ROI.
If not given, and ``mode`` is not `constant`, this map will be computed on the fly.
args: optional args to be passed to ``predictor``.
kwargs: optional keyword args to be passed to ``predictor``.
Note:
- input must be channel-first and have a batch dim, supports N-D sliding window.
"""
print('sliding window inference for ROI')
text = kwargs['text']
use_box = kwargs['use_box']
use_point = kwargs['use_point']
assert not (use_box and use_point)
compute_dtype = inputs.dtype
num_spatial_dims = len(inputs.shape) - 2
if overlap < 0 or overlap >= 1:
raise ValueError("overlap must be >= 0 and < 1.")
# determine image spatial size and batch size
# Note: all input images must have the same image size and batch size
batch_size, _, *image_size_ = inputs.shape
if device is None:
device = inputs.device
if sw_device is None:
sw_device = inputs.device
roi_size = fall_back_tuple(roi_size, image_size_)
# in case that image size is smaller than roi size
image_size = tuple(max(image_size_[i], roi_size[i]) for i in range(num_spatial_dims))
pad_size = []
for k in range(len(inputs.shape) - 1, 1, -1):
diff = max(roi_size[k - 2] - inputs.shape[k], 0)
half = diff // 2
pad_size.extend([half, diff - half])
inputs = F.pad(inputs, pad=pad_size, mode=look_up_option(padding_mode, PytorchPadMode).value, value=cval)
#############
if use_point or use_box:
binary_prompt_map, global_preds = prompt_reflection
global_preds = F.pad(global_preds, pad=pad_size, mode=look_up_option(padding_mode, PytorchPadMode).value, value=cval)
#############
scan_interval = _get_scan_interval(image_size, roi_size, num_spatial_dims, overlap)
# Store all slices in list
slices = dense_patch_slices(image_size, roi_size, scan_interval)
num_win = len(slices) # number of windows per image
total_slices = num_win * batch_size # total number of windows
# Create window-level importance map
valid_patch_size = get_valid_patch_size(image_size, roi_size)
if valid_patch_size == roi_size and (roi_weight_map is not None):
importance_map = roi_weight_map
else:
try:
importance_map = compute_importance_map(valid_patch_size, mode=mode, sigma_scale=sigma_scale, device=device)
except BaseException as e:
raise RuntimeError(
"Seems to be OOM. Please try smaller patch size or mode='constant' instead of mode='gaussian'."
) from e
importance_map = convert_data_type(importance_map, torch.Tensor, device, compute_dtype)[0] # type: ignore
# handle non-positive weights
min_non_zero = max(importance_map[importance_map != 0].min().item(), 1e-3)
importance_map = torch.clamp(importance_map.to(torch.float32), min=min_non_zero).to(compute_dtype)
# Perform predictions
dict_key, output_image_list, count_map_list = None, [], []
_initialized_ss = -1
is_tensor_output = True # whether the predictor's output is a tensor (instead of dict/tuple)
# for each patch
for slice_g in tqdm(range(0, total_slices, sw_batch_size)) if progress else range(0, total_slices, sw_batch_size):
slice_range = range(slice_g, min(slice_g + sw_batch_size, total_slices))
unravel_slice = [
[slice(int(idx / num_win), int(idx / num_win) + 1), slice(None)] + list(slices[idx % num_win])
for idx in slice_range
]
window_data = torch.cat([inputs[win_slice] for win_slice in unravel_slice]).to(sw_device)
#############
boxes = None
points = None
if use_point:
window_binary_prompt_map = torch.cat([binary_prompt_map[win_slice] for win_slice in unravel_slice]).to(sw_device)
point, point_label = select_points(window_binary_prompt_map.squeeze())
points = (point.unsqueeze(0).float().to(device), point_label.unsqueeze(0).float().to(device))
pseudo_label = torch.cat([global_preds[win_slice] for win_slice in unravel_slice]).to(sw_device)
boxes = generate_box(pseudo_label.squeeze()).unsqueeze(0).float().to(device)
if use_box:
if num_win == 1:
window_binary_prompt_map = torch.cat([binary_prompt_map[win_slice] for win_slice in unravel_slice]).to(sw_device)
boxes = generate_box(window_binary_prompt_map.squeeze()).unsqueeze(0).float().to(device)
else:
pseudo_label = torch.cat([global_preds[win_slice] for win_slice in unravel_slice]).to(sw_device)
boxes = generate_box(pseudo_label.squeeze()).unsqueeze(0).float().to(device)
seg_prob_out = predictor(window_data, text, boxes, points) # batched patch segmentation
#############
# convert seg_prob_out to tuple seg_prob_tuple, this does not allocate new memory.
seg_prob_tuple: Tuple[torch.Tensor, ...]
if isinstance(seg_prob_out, torch.Tensor):
seg_prob_tuple = (seg_prob_out,)
elif isinstance(seg_prob_out, Mapping):
if dict_key is None:
dict_key = sorted(seg_prob_out.keys()) # track predictor's output keys
seg_prob_tuple = tuple(seg_prob_out[k] for k in dict_key)
is_tensor_output = False
else:
seg_prob_tuple = ensure_tuple(seg_prob_out)
is_tensor_output = False
# for each output in multi-output list
for ss, seg_prob in enumerate(seg_prob_tuple):
seg_prob = seg_prob.to(device) # BxCxMxNxP or BxCxMxN
# compute zoom scale: out_roi_size/in_roi_size
zoom_scale = []
for axis, (img_s_i, out_w_i, in_w_i) in enumerate(
zip(image_size, seg_prob.shape[2:], window_data.shape[2:])
):
_scale = out_w_i / float(in_w_i)
if not (img_s_i * _scale).is_integer():
warnings.warn(
f"For spatial axis: {axis}, output[{ss}] will have non-integer shape. Spatial "
f"zoom_scale between output[{ss}] and input is {_scale}. Please pad inputs."
)
zoom_scale.append(_scale)
if _initialized_ss < ss: # init. the ss-th buffer at the first iteration
# construct multi-resolution outputs
output_classes = seg_prob.shape[1]
output_shape = [batch_size, output_classes] + [
int(image_size_d * zoom_scale_d) for image_size_d, zoom_scale_d in zip(image_size, zoom_scale)
]
# allocate memory to store the full output and the count for overlapping parts
output_image_list.append(torch.zeros(output_shape, dtype=compute_dtype, device=device))
count_map_list.append(torch.zeros([1, 1] + output_shape[2:], dtype=compute_dtype, device=device))
_initialized_ss += 1
# resizing the importance_map
resizer = Resize(spatial_size=seg_prob.shape[2:], mode="nearest", anti_aliasing=False)
# store the result in the proper location of the full output. Apply weights from importance map.
for idx, original_idx in zip(slice_range, unravel_slice):
# zoom roi
original_idx_zoom = list(original_idx) # 4D for 2D image, 5D for 3D image
for axis in range(2, len(original_idx_zoom)):
zoomed_start = original_idx[axis].start * zoom_scale[axis - 2]
zoomed_end = original_idx[axis].stop * zoom_scale[axis - 2]
if not zoomed_start.is_integer() or (not zoomed_end.is_integer()):
warnings.warn(
f"For axis-{axis-2} of output[{ss}], the output roi range is not int. "
f"Input roi range is ({original_idx[axis].start}, {original_idx[axis].stop}). "
f"Spatial zoom_scale between output[{ss}] and input is {zoom_scale[axis - 2]}. "
f"Corresponding output roi range is ({zoomed_start}, {zoomed_end}).\n"
f"Please change overlap ({overlap}) or roi_size ({roi_size[axis-2]}) for axis-{axis-2}. "
"Tips: if overlap*roi_size*zoom_scale is an integer, it usually works."
)
original_idx_zoom[axis] = slice(int(zoomed_start), int(zoomed_end), None)
importance_map_zoom = resizer(importance_map.unsqueeze(0))[0].to(compute_dtype)
# store results and weights
output_image_list[ss][original_idx_zoom] += importance_map_zoom * seg_prob[idx - slice_g]
count_map_list[ss][original_idx_zoom] += (
importance_map_zoom.unsqueeze(0).unsqueeze(0).expand(count_map_list[ss][original_idx_zoom].shape)
)
# account for any overlapping sections
for ss in range(len(output_image_list)):
output_image_list[ss] = (output_image_list[ss] / count_map_list.pop(0)).to(compute_dtype)
# remove padding if image_size smaller than roi_size
for ss, output_i in enumerate(output_image_list):
if torch.isnan(output_i).any() or torch.isinf(output_i).any():
warnings.warn("Sliding window inference results contain NaN or Inf.")
zoom_scale = [
seg_prob_map_shape_d / roi_size_d for seg_prob_map_shape_d, roi_size_d in zip(output_i.shape[2:], roi_size)
]
final_slicing: List[slice] = []
for sp in range(num_spatial_dims):
slice_dim = slice(pad_size[sp * 2], image_size_[num_spatial_dims - sp - 1] + pad_size[sp * 2])
slice_dim = slice(
int(round(slice_dim.start * zoom_scale[num_spatial_dims - sp - 1])),
int(round(slice_dim.stop * zoom_scale[num_spatial_dims - sp - 1])),
)
final_slicing.insert(0, slice_dim)
while len(final_slicing) < len(output_i.shape):
final_slicing.insert(0, slice(None))
output_image_list[ss] = output_i[final_slicing]
if dict_key is not None: # if output of predictor is a dict
final_output = dict(zip(dict_key, output_image_list))
else:
final_output = tuple(output_image_list) # type: ignore
return final_output[0] if is_tensor_output else final_output # type: ignore
def _get_scan_interval(
image_size: Sequence[int], roi_size: Sequence[int], num_spatial_dims: int, overlap: float
) -> Tuple[int, ...]:
"""
Compute scan interval according to the image size, roi size and overlap.
Scan interval will be `int((1 - overlap) * roi_size)`, if interval is 0,
use 1 instead to make sure sliding window works.
"""
if len(image_size) != num_spatial_dims:
raise ValueError("image coord different from spatial dims.")
if len(roi_size) != num_spatial_dims:
raise ValueError("roi coord different from spatial dims.")
scan_interval = []
for i in range(num_spatial_dims):
if roi_size[i] == image_size[i]:
scan_interval.append(int(roi_size[i]))
else:
interval = int(roi_size[i] * (1 - overlap))
scan_interval.append(interval if interval > 0 else 1)
return tuple(scan_interval)
# build 3D SAM
import torch
import numpy as np
from monai.networks.nets import ViT
def _build_sam(
image_encoder_type,
embed_dim,
patch_size,
checkpoint,
image_size,
):
mlp_dim = 3072
num_layers = 12
num_heads = 12
pos_embed = 'perceptron'
dropout_rate = 0.0
image_encoder=ViT(
in_channels=1,
img_size=image_size,
patch_size=patch_size,
hidden_size=embed_dim,
mlp_dim=mlp_dim,
num_layers=num_layers,
num_heads=num_heads,
pos_embed=pos_embed,
classification=False,
dropout_rate=dropout_rate,
)
image_embedding_size = [int(item) for item in (np.array(image_size) / np.array(patch_size))]
if checkpoint is not None:
with open(checkpoint, "rb") as f:
state_dict = torch.load(f, map_location='cpu')['state_dict']
encoder_dict = {k.replace('model.encoder.', ''): v for k, v in state_dict.items() if 'model.encoder.' in k}
image_encoder.load_state_dict(encoder_dict)
print(f'===> image_encoder.load_param: {checkpoint}')
sam = Sam(
image_encoder=image_encoder,
prompt_encoder=PromptEncoder(
embed_dim=embed_dim,
image_embedding_size=image_embedding_size,
input_image_size=image_size,
mask_in_chans=16,
),
mask_decoder=MaskDecoder(
image_encoder_type=image_encoder_type,
num_multimask_outputs=3,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=embed_dim,
mlp_dim=2048,
num_heads=8,
),
transformer_dim=embed_dim,
iou_head_depth=3,
iou_head_hidden_dim=256,
image_size=np.array(image_size),
patch_size=np.array(patch_size),
),
pixel_mean=[123.675, 116.28, 103.53],
pixel_std=[58.395, 57.12, 57.375],
)
sam.eval()
return sam
# mask decoder
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
from torch import nn
from torch.nn import functional as F
from typing import List, Tuple, Type, Optional
class MaskDecoder(nn.Module):
def __init__(
self,
*,
image_encoder_type: str,
transformer_dim: int,
transformer: nn.Module,
num_multimask_outputs: int = 3,
activation: Type[nn.Module] = nn.GELU,
iou_head_depth: int = 3,
iou_head_hidden_dim: int = 256,
image_size,
patch_size,
) -> None:
"""
Predicts masks given an image and prompt embeddings, using a
transformer architecture.
Arguments:
transformer_dim (int): the channel dimension of the transformer
transformer (nn.Module): the transformer used to predict masks
num_multimask_outputs (int): the number of masks to predict
when disambiguating masks
activation (nn.Module): the type of activation to use when
upscaling masks
iou_head_depth (int): the depth of the MLP used to predict
mask quality
iou_head_hidden_dim (int): the hidden dimension of the MLP
used to predict mask quality
"""
super().__init__()
self.transformer_dim = transformer_dim
self.transformer = transformer
self.num_multimask_outputs = num_multimask_outputs
self.iou_token = nn.Embedding(1, transformer_dim)
self.num_mask_tokens = num_multimask_outputs + 1
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
if image_encoder_type == 'swin_vit':
self.feat_shape = image_size/patch_size
self.output_upscaling = nn.Sequential(
nn.ConvTranspose3d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
nn.LayerNorm((transformer_dim // 4, int(self.feat_shape[0]), int(self.feat_shape[1]), int(self.feat_shape[2]))), # swin
activation(),
nn.ConvTranspose3d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), # swin
# nn.Conv3d(transformer_dim // 4, transformer_dim // 8, kernel_size=3, stride=1, padding=1), # vit
activation(),
)
else:
self.feat_shape = image_size/patch_size * 2
self.output_upscaling = nn.Sequential(
nn.ConvTranspose3d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
nn.LayerNorm((transformer_dim // 4, int(self.feat_shape[0]), int(self.feat_shape[1]), int(self.feat_shape[2]))), # vit
activation(),
nn.ConvTranspose3d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
# nn.Conv3d(transformer_dim // 4, transformer_dim // 8, kernel_size=3, stride=1, padding=1),
activation(),
)
self.output_hypernetworks_mlps = nn.ModuleList(
[
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
for i in range(self.num_mask_tokens)
]
)
self.iou_prediction_head = MLP(
transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
)
self.txt_align_upscaled_embedding = nn.Linear(768, 96)
def forward(
self,
image_embeddings: torch.Tensor,
text_embedding: Optional[torch.Tensor],
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
multimask_output: bool,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Predict masks given image and prompt embeddings.
Returns:
torch.Tensor: batched predicted masks
"""
# print('--------------decoder here--------------')
masks, iou_pred = self.predict_masks(
image_embeddings=image_embeddings,
text_embedding=text_embedding,
image_pe=image_pe,
sparse_prompt_embeddings=sparse_prompt_embeddings,
dense_prompt_embeddings=dense_prompt_embeddings,
)
# Select the correct mask or masks for output
if multimask_output:
mask_slice = slice(1, None)
else:
mask_slice = slice(0, 1)
masks = masks[:, mask_slice, :, :, :]
iou_pred = iou_pred[:, mask_slice]
# Prepare output
return masks, iou_pred
def predict_masks(
self,
image_embeddings: torch.Tensor,
text_embedding: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Predicts masks. See 'forward' for more details."""
# Concatenate output tokens
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
# Expand per-image data in batch direction to be per-mask
if image_embeddings.shape[0] != tokens.shape[0]:
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
else:
src = image_embeddings
src = src + dense_prompt_embeddings
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
b, c, h, w, d = src.shape
# Run the transformer
hs, src = self.transformer(src, pos_src, tokens)
iou_token_out = hs[:, 0, :]
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
# Upscale mask embeddings and predict masks using the mask tokens
src = src.transpose(1, 2).view(b, c, h, w, d)
upscaled_embedding = self.output_upscaling(src)
hyper_in_list: List[torch.Tensor] = []
for i in range(self.num_mask_tokens):
hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
hyper_in = torch.stack(hyper_in_list, dim=1)
b, c, h, w, d = upscaled_embedding.shape
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w * d)).view(b, -1, h, w, d)
if text_embedding is not None:
text_embedding_down = self.txt_align_upscaled_embedding(text_embedding).unsqueeze(dim=1)
upscaled_embedding = upscaled_embedding.view(b, c, h * w * d)
sim = (text_embedding_down @ upscaled_embedding).view(b, -1, h, w, d)
sim = sim.repeat(1, masks.shape[1], 1, 1, 1)
masks = masks + sim
iou_pred = self.iou_prediction_head(iou_token_out)
return masks, iou_pred
# Lightly adapted from
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
class MLP(nn.Module):
def __init__(
self,
input_dim: int,
hidden_dim: int,
output_dim: int,
num_layers: int,
sigmoid_output: bool = False,
) -> None:
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
)
self.sigmoid_output = sigmoid_output
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
if self.sigmoid_output:
x = F.sigmoid(x)
return x
# prompt encoder
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
from torch import nn
from typing import Any, Optional, Tuple, Type
class PromptEncoder(nn.Module):
def __init__(
self,
embed_dim: int,
image_embedding_size: Tuple[int, int, int],
input_image_size: Tuple[int, int, int],
mask_in_chans: int,
activation: Type[nn.Module] = nn.GELU,
) -> None:
"""
Encodes prompts for input to SAM's mask decoder.
Arguments:
embed_dim (int): The prompts' embedding dimension
image_embedding_size (tuple(int, int)): The spatial size of the
image embedding, as (H, W).
input_image_size (int): The padded size of the image as input
to the image encoder, as (H, W).
mask_in_chans (int): The number of hidden channels used for
encoding input masks.
activation (nn.Module): The activation to use when encoding
input masks.
"""
super().__init__()
self.embed_dim = embed_dim
self.input_image_size = input_image_size
self.image_embedding_size = image_embedding_size
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
self.point_embeddings = nn.ModuleList(point_embeddings)
self.not_a_point_embed = nn.Embedding(1, embed_dim)
self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1], 4 * image_embedding_size[2])
self.mask_downscaling = nn.Sequential(
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
LayerNorm2d(mask_in_chans // 4),
activation(),
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
LayerNorm2d(mask_in_chans),
activation(),
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
)
self.no_mask_embed = nn.Embedding(1, embed_dim)
def get_dense_pe(self) -> torch.Tensor:
"""
Returns the positional encoding used to encode point prompts,
applied to a dense set of points the shape of the image encoding.
Returns:
torch.Tensor: Positional encoding with shape
1x(embed_dim)x(embedding_h)x(embedding_w)
"""
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
def _embed_points(
self,
points: torch.Tensor,
labels: torch.Tensor,
pad: bool,
) -> torch.Tensor:
"""Embeds point prompts."""
points = points + 0.5 # Shift to center of pixel
if pad:
padding_point = torch.zeros((points.shape[0], 1, 3), device=points.device)
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
points = torch.cat([points, padding_point], dim=1)
labels = torch.cat([labels, padding_label], dim=1)
point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
point_embedding[labels == -1] = 0.0
point_embedding[labels == -1] += self.not_a_point_embed.weight
point_embedding[labels == 0] += self.point_embeddings[0].weight
point_embedding[labels == 1] += self.point_embeddings[1].weight
return point_embedding
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
"""Embeds box prompts."""
boxes = boxes + 0.5 # Shift to center of pixel
coords = boxes.reshape(-1, 2, 3)
corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
return corner_embedding
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
"""Embeds mask inputs."""
mask_embedding = self.mask_downscaling(masks)
return mask_embedding
def _get_batch_size(
self,
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
boxes: Optional[torch.Tensor],
masks: Optional[torch.Tensor],
text_embedding: Optional[torch.Tensor],
) -> int:
"""
Gets the batch size of the output given the batch size of the input prompts.
"""
if points is not None:
return points[0].shape[0]
elif boxes is not None:
return boxes.shape[0]
elif masks is not None:
return masks.shape[0]
elif text_embedding is not None:
return text_embedding.shape[0]
else:
return 1
def _get_device(self) -> torch.device:
return self.point_embeddings[0].weight.device
def forward(
self,
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
boxes: Optional[torch.Tensor],
masks: Optional[torch.Tensor],
text_embedding: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
bs = self._get_batch_size(points, boxes, masks, text_embedding)
sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
if points is not None:
coords, labels = points
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
if boxes is not None:
box_embeddings = self._embed_boxes(boxes)
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
if text_embedding is not None:
sparse_embeddings = torch.cat([sparse_embeddings, text_embedding.unsqueeze(dim=1)], dim=1)
if masks is not None:
dense_embeddings = self._embed_masks(masks)
else:
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1, 1).expand(
bs, -1, int(self.image_embedding_size[0]), int(self.image_embedding_size[1]), int(self.image_embedding_size[2])
)
return sparse_embeddings, dense_embeddings
class PositionEmbeddingRandom(nn.Module):
"""
Positional encoding using random spatial frequencies.
"""
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
super().__init__()
if scale is None or scale <= 0.0:
scale = 1.0
self.register_buffer(
"positional_encoding_gaussian_matrix",
scale * torch.randn((3, num_pos_feats)),
)
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
"""Positionally encode points that are normalized to [0,1]."""
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
coords = 2 * coords - 1
coords = coords @ self.positional_encoding_gaussian_matrix
coords = 2 * np.pi * coords
# outputs d_1 x ... x d_n x C shape
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
def forward(self, size: Tuple[int, int, int]) -> torch.Tensor:
"""Generate positional encoding for a grid of the specified size."""
h, w, d = size
device: Any = self.positional_encoding_gaussian_matrix.device
grid = torch.ones((h, w, d), device=device, dtype=torch.float32)
y_embed = grid.cumsum(dim=0) - 0.5
x_embed = grid.cumsum(dim=1) - 0.5
z_embed = grid.cumsum(dim=2) - 0.5
y_embed = y_embed / h
x_embed = x_embed / w
z_embed = z_embed / d
pe = self._pe_encoding(torch.stack([x_embed, y_embed, z_embed], dim=-1))
return pe.permute(3, 0, 1, 2) # C x H x W x D
def forward_with_coords(
self, coords_input: torch.Tensor, image_size: Tuple[int, int]
) -> torch.Tensor:
"""Positionally encode points that are not normalized to [0,1]."""
coords = coords_input.clone()
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
coords[:, :, 2] = coords[:, :, 2] / image_size[2]
return self._pe_encoding(coords.to(torch.float)) # B x N x C
# two way transformer
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
from torch import Tensor, nn
import math
from typing import Tuple, Type
class TwoWayTransformer(nn.Module):
def __init__(
self,
depth: int,
embedding_dim: int,
num_heads: int,
mlp_dim: int,
activation: Type[nn.Module] = nn.ReLU,
attention_downsample_rate: int = 2,
) -> None:
"""
A transformer decoder that attends to an input image using
queries whose positional embedding is supplied.
Args:
depth (int): number of layers in the transformer
embedding_dim (int): the channel dimension for the input embeddings
num_heads (int): the number of heads for multihead attention. Must
divide embedding_dim
mlp_dim (int): the channel dimension internal to the MLP block
activation (nn.Module): the activation to use in the MLP block
"""
super().__init__()
self.depth = depth
self.embedding_dim = embedding_dim
self.num_heads = num_heads
self.mlp_dim = mlp_dim
self.layers = nn.ModuleList()
for i in range(depth):
self.layers.append(
TwoWayAttentionBlock(
embedding_dim=embedding_dim,
num_heads=num_heads,
mlp_dim=mlp_dim,
activation=activation,
attention_downsample_rate=attention_downsample_rate,
skip_first_layer_pe=(i == 0),
)
)
self.final_attn_token_to_image = Attention(
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
)
self.norm_final_attn = nn.LayerNorm(embedding_dim)
def forward(
self,
image_embedding: Tensor,
image_pe: Tensor,
point_embedding: Tensor,
) -> Tuple[Tensor, Tensor]:
"""
Args:
image_embedding (torch.Tensor): image to attend to. Should be shape
B x embedding_dim x h x w for any h and w.
image_pe (torch.Tensor): the positional encoding to add to the image. Must
have the same shape as image_embedding.
point_embedding (torch.Tensor): the embedding to add to the query points.
Must have shape B x N_points x embedding_dim for any N_points.
Returns:
torch.Tensor: the processed point_embedding
torch.Tensor: the processed image_embedding
"""
# BxCxHxW -> BxHWxC == B x N_image_tokens x C
bs, c, h, w, d = image_embedding.shape
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
image_pe = image_pe.flatten(2).permute(0, 2, 1)
# Prepare queries
queries = point_embedding
keys = image_embedding
# Apply transformer blocks and final layernorm
for layer in self.layers:
queries, keys = layer(
queries=queries,
keys=keys,
query_pe=point_embedding,
key_pe=image_pe,
)
# Apply the final attention layer from the points to the image
q = queries + point_embedding
k = keys + image_pe
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
queries = queries + attn_out
queries = self.norm_final_attn(queries)
return queries, keys
class TwoWayAttentionBlock(nn.Module):
def __init__(
self,
embedding_dim: int,
num_heads: int,
mlp_dim: int = 2048,
activation: Type[nn.Module] = nn.ReLU,
attention_downsample_rate: int = 2,
skip_first_layer_pe: bool = False,
) -> None:
"""
A transformer block with four layers: (1) self-attention of sparse
inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
block on sparse inputs, and (4) cross attention of dense inputs to sparse
inputs.
Arguments:
embedding_dim (int): the channel dimension of the embeddings
num_heads (int): the number of heads in the attention layers
mlp_dim (int): the hidden dimension of the mlp block
activation (nn.Module): the activation of the mlp block
skip_first_layer_pe (bool): skip the PE on the first layer
"""
super().__init__()
self.self_attn = Attention(embedding_dim, num_heads)
self.norm1 = nn.LayerNorm(embedding_dim)
self.cross_attn_token_to_image = Attention(
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
)
self.norm2 = nn.LayerNorm(embedding_dim)
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
self.norm3 = nn.LayerNorm(embedding_dim)
self.norm4 = nn.LayerNorm(embedding_dim)
self.cross_attn_image_to_token = Attention(
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
)
self.skip_first_layer_pe = skip_first_layer_pe
def forward(
self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
) -> Tuple[Tensor, Tensor]:
# Self attention block
if self.skip_first_layer_pe:
queries = self.self_attn(q=queries, k=queries, v=queries)
else:
q = queries + query_pe
attn_out = self.self_attn(q=q, k=q, v=queries)
queries = queries + attn_out
queries = self.norm1(queries)
# Cross attention block, tokens attending to image embedding
q = queries + query_pe
k = keys + key_pe
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
queries = queries + attn_out
queries = self.norm2(queries)
# MLP block
mlp_out = self.mlp(queries)
queries = queries + mlp_out
queries = self.norm3(queries)
# Cross attention block, image embedding attending to tokens
q = queries + query_pe
k = keys + key_pe
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
keys = keys + attn_out
keys = self.norm4(keys)
return queries, keys
class Attention(nn.Module):
"""
An attention layer that allows for downscaling the size of the embedding
after projection to queries, keys, and values.
"""
def __init__(
self,
embedding_dim: int,
num_heads: int,
downsample_rate: int = 1,
) -> None:
super().__init__()
self.embedding_dim = embedding_dim
self.internal_dim = embedding_dim // downsample_rate
self.num_heads = num_heads
assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
b, n, c = x.shape
x = x.reshape(b, n, num_heads, c // num_heads)
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
def _recombine_heads(self, x: Tensor) -> Tensor:
b, n_heads, n_tokens, c_per_head = x.shape
x = x.transpose(1, 2)
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
# Input projections
q = self.q_proj(q)
k = self.k_proj(k)
v = self.v_proj(v)
# Separate into heads
q = self._separate_heads(q, self.num_heads)
k = self._separate_heads(k, self.num_heads)
v = self._separate_heads(v, self.num_heads)
# Attention
_, _, _, c_per_head = q.shape
attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens
attn = attn / math.sqrt(c_per_head)
attn = torch.softmax(attn, dim=-1)
# Get output
out = attn @ v
out = self._recombine_heads(out)
out = self.out_proj(out)
return out
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
class LayerNorm2d(nn.Module):
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class MLPBlock(nn.Module):
def __init__(
self,
embedding_dim: int,
mlp_dim: int,
act: Type[nn.Module] = nn.GELU,
) -> None:
super().__init__()
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
self.act = act()
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.lin2(self.act(self.lin1(x)))
# sam
class Sam(nn.Module):
mask_threshold: float = 0.0
image_format: str = "RGB"
def __init__(
self,
image_encoder,
prompt_encoder,
mask_decoder,
pixel_mean: List[float] = [123.675, 116.28, 103.53],
pixel_std: List[float] = [58.395, 57.12, 57.375],
) -> None:
"""
SAM predicts object masks from an image and input prompts.
Arguments:
image_encoder (ImageEncoderViT): The backbone used to encode the
image into image embeddings that allow for efficient mask prediction.
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
mask_decoder (MaskDecoder): Predicts masks from the image embeddings
and encoded prompts.
pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
pixel_std (list(float)): Std values for normalizing pixels in the input image.
"""
super().__init__()
self.image_encoder = image_encoder
self.prompt_encoder = prompt_encoder
self.mask_decoder = mask_decoder
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
@property
def device(self) -> Any:
return self.pixel_mean.device
@torch.no_grad()
def forward(
self,
batched_input: List[Dict[str, Any]],
multimask_output: bool,
) -> List[Dict[str, torch.Tensor]]:
"""
Predicts masks end-to-end from provided images and prompts.
If prompts are not known in advance, using SamPredictor is
recommended over calling the model directly.
Arguments:
batched_input (list(dict)): A list over input images, each a
dictionary with the following keys. A prompt key can be
excluded if it is not present.
'image': The image as a torch tensor in 3xHxW format,
already transformed for input to the model.
'original_size': (tuple(int, int)) The original size of
the image before transformation, as (H, W).
'point_coords': (torch.Tensor) Batched point prompts for
this image, with shape BxNx2. Already transformed to the
input frame of the model.
'point_labels': (torch.Tensor) Batched labels for point prompts,
with shape BxN.
'boxes': (torch.Tensor) Batched box inputs, with shape Bx4.
Already transformed to the input frame of the model.
'mask_inputs': (torch.Tensor) Batched mask inputs to the model,
in the form Bx1xHxW.
multimask_output (bool): Whether the model should predict multiple
disambiguating masks, or return a single mask.
Returns:
(list(dict)): A list over input images, where each element is
as dictionary with the following keys.
'masks': (torch.Tensor) Batched binary mask predictions,
with shape BxCxHxW, where B is the number of input prompts,
C is determined by multimask_output, and (H, W) is the
original size of the image.
'iou_predictions': (torch.Tensor) The model's predictions
of mask quality, in shape BxC.
'low_res_logits': (torch.Tensor) Low resolution logits with
shape BxCxHxW, where H=W=256. Can be passed as mask input
to subsequent iterations of prediction.
"""
input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0)
image_embeddings = self.image_encoder(input_images)
outputs = []
for image_record, curr_embedding in zip(batched_input, image_embeddings):
if "point_coords" in image_record:
points = (image_record["point_coords"], image_record["point_labels"])
else:
points = None
sparse_embeddings, dense_embeddings = self.prompt_encoder(
points=points,
boxes=image_record.get("boxes", None),
masks=image_record.get("mask_inputs", None),
)
low_res_masks, iou_predictions = self.mask_decoder(
image_embeddings=curr_embedding.unsqueeze(0),
image_pe=self.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=multimask_output,
)
masks = self.postprocess_masks(
low_res_masks,
input_size=image_record["image"].shape[-2:],
original_size=image_record["original_size"],
)
masks = masks > self.mask_threshold
outputs.append(
{
"masks": masks,
"iou_predictions": iou_predictions,
"low_res_logits": low_res_masks,
}
)
return outputs
def postprocess_masks(
self,
masks: torch.Tensor,
input_size: Tuple[int, ...],
original_size: Tuple[int, ...],
) -> torch.Tensor:
"""
Remove padding and upscale masks to the original image size.
Arguments:
masks (torch.Tensor): Batched masks from the mask_decoder,
in BxCxHxW format.
input_size (tuple(int, int)): The size of the image input to the
model, in (H, W) format. Used to remove padding.
original_size (tuple(int, int)): The original size of the image
before resizing for input to the model, in (H, W) format.
Returns:
(torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
is given by original_size.
"""
masks = F.interpolate(
masks,
(self.image_encoder.img_size, self.image_encoder.img_size),
mode="bilinear",
align_corners=False,
)
masks = masks[..., : input_size[0], : input_size[1]]
masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
return masks
def preprocess(self, x: torch.Tensor) -> torch.Tensor:
"""Normalize pixel values and pad to a square input."""
# Normalize colors
# TODO
x = (x - self.pixel_mean) / self.pixel_std
# Pad
h, w = x.shape[-2:]
padh = self.image_encoder.img_size - h
padw = self.image_encoder.img_size - w
x = F.pad(x, (0, padw, 0, padh))
return x |