File size: 84,582 Bytes
5d7a143
84e7143
 
d099612
7a01238
5d7a143
 
 
 
 
 
13e6989
5d7a143
 
 
 
 
13e6989
5d7a143
e95c4a6
7a01238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13e6989
7a01238
 
84e7143
 
7a01238
f192b2c
 
8d8118b
 
 
 
72b250b
 
a3e2e90
8d8118b
13e6989
72b250b
 
 
 
 
35cfafe
8d8118b
 
 
 
 
 
 
 
 
 
 
ad9a9f8
8d8118b
 
2b7366f
 
8d8118b
 
2b7366f
 
 
 
4ee7532
 
 
2b7366f
 
 
 
 
ad9a9f8
2b7366f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e46628a
2b7366f
 
 
 
 
 
 
 
 
8d8118b
7a01238
84e7143
 
 
 
0672fb5
84e7143
 
 
 
 
 
 
 
 
f192b2c
0672fb5
 
410f9a9
0672fb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84e7143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44c38ef
 
 
 
 
 
 
0672fb5
84e7143
 
 
 
 
f192b2c
 
 
c995392
faa61f9
 
c995392
f192b2c
c995392
faa61f9
2f9c026
8d8118b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d099612
 
e49ada4
 
 
 
 
 
 
 
 
 
d099612
0672fb5
 
 
 
 
 
 
 
 
 
 
84e7143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faa61f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84e7143
faa61f9
 
 
 
 
 
 
 
 
 
c4cc548
faa61f9
7a01238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13e6989
7a01238
 
 
f192b2c
7a01238
 
 
13e6989
7a01238
 
f192b2c
 
7a01238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0672fb5
 
7a01238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0672fb5
 
 
 
 
 
 
 
 
 
 
 
 
 
7a01238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f192b2c
 
7a01238
f192b2c
7a01238
 
0672fb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a01238
 
13e6989
7a01238
f192b2c
7a01238
 
13e6989
7a01238
 
 
 
 
 
 
 
 
f192b2c
7a01238
 
 
 
 
 
c995392
7a01238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f192b2c
7a01238
f192b2c
7a01238
 
 
f192b2c
7a01238
 
f192b2c
7a01238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
from transformers import PreTrainedModel, PretrainedConfig
import numpy as np
import monai.transforms as transforms
import nibabel as nib

class SegVolConfig(PretrainedConfig):
    model_type = "segvol"

    def __init__(
        self,
        test_mode=True,
        clip_model='openai/clip-vit-base-patch32',
        **kwargs,
    ):
        self.spatial_size = [32, 256, 256]
        self.patch_size = [4, 16, 16]
        self.test_mode = test_mode
        self.clip_model = clip_model
        super().__init__(**kwargs)

class SegVolModel(PreTrainedModel):
    config_class = SegVolConfig

    def __init__(self, config):
        super().__init__(config)
        sam_model = _build_sam(
            image_encoder_type='vit',
            embed_dim = 768,
            patch_size=self.config.patch_size,
            checkpoint=None,
            image_size=self.config.spatial_size,
        )
        self.model = SegVol(
            image_encoder=sam_model.image_encoder, 
            mask_decoder=sam_model.mask_decoder,
            prompt_encoder=sam_model.prompt_encoder,
            roi_size=self.config.spatial_size,
            patch_size=self.config.patch_size,
            clip_model=self.config.clip_model,
            test_mode=self.config.test_mode,
            )
        
        self.processor = SegVolProcessor(spatial_size=self.config.spatial_size)

        self.custom_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    def forward_test(self, 
                image, 
                zoomed_image=None, 
                text_prompt=None, 
                bbox_prompt_group=None, 
                point_prompt_group=None, 
                use_zoom=True):
        assert image.shape[0] == 1 and zoomed_image.shape[0] == 1, 'batch size should be 1'
        assert not (text_prompt is None and bbox_prompt_group is None and point_prompt_group is None), 'Drive SegVol using at least one type of prompt'
        bbox_prompt, bbox_prompt_map, point_prompt, point_prompt_map=None, None, None, None
        if bbox_prompt_group is not None:
            bbox_prompt, bbox_prompt_map = bbox_prompt_group
        if point_prompt_group is not None:
            point_prompt, point_prompt_map = point_prompt_group
        volume_shape = image[0][0].shape

        with torch.no_grad():
            logits_global_single = self.model(zoomed_image,
                                                text=text_prompt, 
                                                boxes=bbox_prompt, 
                                                points=point_prompt)
        logits_global_single = F.interpolate(
            logits_global_single.cpu(),
            size=volume_shape, mode='nearest')
        if not use_zoom:
            return logits_global_single
        
        if point_prompt_map is not None:
            binary_points = F.interpolate(
                point_prompt_map.float(),
                size=volume_shape, mode='nearest')
        if bbox_prompt_map is not None:
            binary_cube = F.interpolate(
                bbox_prompt_map.float(),
                size=volume_shape, mode='nearest')
        
        min_d, min_h, min_w, max_d, max_h, max_w = logits2roi_coor(self.config.spatial_size, logits_global_single[0][0])
        if min_d is None:
            print('Fail to detect foreground!')
            return logits_global_single

        # Crop roi
        image_single_cropped = image[:, :, min_d:max_d+1, min_h:max_h+1, min_w:max_w+1]
        global_preds = (torch.sigmoid(logits_global_single[:, :, min_d:max_d+1, min_h:max_h+1, min_w:max_w+1])>0.5).long()
        
        assert not (bbox_prompt is not None and point_prompt is not None), 'Do not use point prompt and box prompt at the same time.'
        prompt_reflection = None
        if bbox_prompt is not None:
            binary_cube_cropped = binary_cube[:, :, min_d:max_d+1, min_h:max_h+1, min_w:max_w+1]
            prompt_reflection = (
                binary_cube_cropped,
                global_preds
            )
        if point_prompt is not None:
            binary_points_cropped = binary_points[:, :, min_d:max_d+1, min_h:max_h+1, min_w:max_w+1]
            prompt_reflection = (
                binary_points_cropped,
                global_preds
            )
    
        ## inference
        with torch.no_grad():
            logits_single_cropped = sliding_window_inference(
                    image_single_cropped.to(self.custom_device), prompt_reflection,
                    self.config.spatial_size, 1, self.model, 0.5,
                    text=text_prompt,
                    use_box=bbox_prompt is not None,
                    use_point=point_prompt is not None,
                )
            logits_single_cropped = logits_single_cropped.cpu().squeeze()
        logits_global_single[:, :, min_d:max_d+1, min_h:max_h+1, min_w:max_w+1] = logits_single_cropped
        return logits_global_single



# processor
class SegVolProcessor():
    def __init__(self, spatial_size) -> None:
        self.img_loader = transforms.LoadImage()
        self.transform4test = transforms.Compose(
            [
                ForegroundNormalization(keys=["image"]),
                DimTranspose(keys=["image", "label"]),
                MinMaxNormalization(),
                transforms.CropForegroundd(keys=["image", "label"], source_key="image"),
                transforms.ToTensord(keys=["image", "label"]),
            ]
        )
        self.zoom_out_transform = transforms.Resized(keys=["image", "label"], spatial_size=spatial_size, mode='nearest-exact')
        self.custom_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.transform4train = transforms.Compose(
        [
            # transforms.AddChanneld(keys=["image"]),
            DimTranspose(keys=["image", "label"]),
            MinMaxNormalization(),
            transforms.CropForegroundd(keys=["image", "label"], source_key="image"),
            transforms.SpatialPadd(keys=["image", "label"], spatial_size=spatial_size, mode='constant'),
            transforms.OneOf(transforms=[
                transforms.Resized(keys=["image", "label"],spatial_size=spatial_size),
                transforms.RandCropByPosNegLabeld(
                    keys=["image", "label"],
                    label_key="label",
                    spatial_size=spatial_size,
                    pos=5,
                    neg=1,
                    num_samples=1,
                    image_key="image",
                    image_threshold=0,
                ),
                ],
                weights=[1, 3]
            ),
            transforms.RandFlipd(keys=["image", "label"], prob=0.2, spatial_axis=0),
            transforms.RandFlipd(keys=["image", "label"], prob=0.2, spatial_axis=1),
            transforms.RandFlipd(keys=["image", "label"], prob=0.2, spatial_axis=2),
            transforms.RandScaleIntensityd(keys="image", factors=0.2, prob=0.2),
            transforms.RandShiftIntensityd(keys="image", offsets=0.2, prob=0.2),
            transforms.ToTensord(keys=["image", "label"]),
        ]
    )
    
    # ct_path is path for a ct scan file with nii.gz format
    # gt_path is path for a ground truth file with nii.gz format
    def preprocess_ct_gt(self, ct_path, gt_path, category):
        item = {}
        # generate ct_voxel_ndarray
        ct_voxel_ndarray, _ = self.img_loader(ct_path)
        ct_voxel_ndarray = np.array(ct_voxel_ndarray).squeeze()
        ct_shape = ct_voxel_ndarray.shape
        ct_voxel_ndarray = np.expand_dims(ct_voxel_ndarray, axis=0)
        item['image'] = ct_voxel_ndarray

        # generate gt_voxel_ndarray
        gt_voxel_ndarray, _ = self.img_loader(gt_path)
        gt_voxel_ndarray = np.array(gt_voxel_ndarray)
        present_categories = np.unique(gt_voxel_ndarray)
        gt_masks = []
        for cls_idx in range(len(category)):
            # ignore background
            cls = cls_idx + 1
            if cls not in present_categories:
                gt_voxel_ndarray_category = np.zeros(ct_shape)
                gt_masks.append(gt_voxel_ndarray_category)
            else:
                gt_voxel_ndarray_category = gt_voxel_ndarray.copy()
                gt_voxel_ndarray_category[gt_voxel_ndarray != cls] = 0
                gt_voxel_ndarray_category[gt_voxel_ndarray == cls] = 1
                gt_masks.append(gt_voxel_ndarray_category)
        gt_voxel_ndarray = np.stack(gt_masks, axis=0)
        assert gt_voxel_ndarray.shape[0] == len(category) and gt_voxel_ndarray.shape[1:] == ct_voxel_ndarray.shape[1:]
        item['label'] = gt_voxel_ndarray.astype(np.int32)

        # transform
        return item['image'], item['label']

    def zoom_transform(self, ct_npy, gt_npy):
        item = {
            'image': ct_npy,
            'label': gt_npy
        }
        item = self.transform4test(item)
        item_zoom_out = self.zoom_out_transform(item)
        item['zoom_out_image'] = item_zoom_out['image']
        item['zoom_out_label'] = item_zoom_out['label']
        return item

    def point_prompt_b(self, label_single_resize, num_positive_extra=4, num_negative_extra=0):
        point, point_label = select_points(label_single_resize, num_positive_extra=num_positive_extra, num_negative_extra=num_negative_extra)
        points_single = (point.unsqueeze(0).float().to(self.custom_device), point_label.unsqueeze(0).float().to(self.custom_device)) 
        binary_points_resize = build_binary_points(point, point_label, label_single_resize.shape).unsqueeze(0).unsqueeze(0)
        return points_single, binary_points_resize
    
    def bbox_prompt_b(self, label_single_resize):
        box_single = generate_box(label_single_resize).unsqueeze(0).float().to(self.custom_device)
        binary_cube_resize = build_binary_cube(box_single, binary_cube_shape=label_single_resize.shape).unsqueeze(0).unsqueeze(0)
        return box_single, binary_cube_resize

    def dice_score(self, preds, labels):
        assert preds.shape[0] == labels.shape[0], "predict & target batch size don't match\n" + str(preds.shape) + str(labels.shape)
        predict = preds.view(1, -1)
        target = labels.view(1, -1)
        if target.shape[1] < 1e8:
            predict = predict.to(self.custom_device)
            target = target.to(self.custom_device)
        predict = torch.sigmoid(predict)
        predict = torch.where(predict > 0.5, 1., 0.)
        
        tp = torch.sum(torch.mul(predict, target))
        den = torch.sum(predict) + torch.sum(target) + 1
        dice = 2 * tp / den

        if target.shape[1] < 1e8:
            predict = predict.cpu()
            target = target.cpu()
        return dice
    
    def save_preds(self, ct_path, save_path, logits_mask, start_coord, end_coord):
        ct = nib.load(ct_path)
        logits_mask = logits_mask.transpose(-1, -3)
        start_coord[-1], start_coord[-3] = start_coord[-3], start_coord[-1]
        end_coord[-1], end_coord[-3] = end_coord[-3], end_coord[-1]
        preds_save = torch.zeros(ct.shape)
        preds_save[start_coord[0]:end_coord[0], 
                        start_coord[1]:end_coord[1], 
                        start_coord[2]:end_coord[2]] = torch.sigmoid(logits_mask)
        preds_save = torch.where(preds_save > 0.5, 1., 0.).numpy()
        preds_nii = nib.Nifti1Image(preds_save, affine=ct.affine, header=ct.header)
        nib.save(preds_nii, save_path)

    def train_transform(self, ct_npy, gt_npy):
        item = {
            'image': ct_npy,
            'label': gt_npy
        }
        item = self.transform4train(item)
        if type(item) is list:
            assert len(item) == 1
            item = item[0]
        return item

class MinMaxNormalization(transforms.Transform):
    def __call__(self, data):
        d = dict(data)
        k = "image"
        d[k] = d[k] - d[k].min()
        d[k] = d[k] / np.clip(d[k].max(), a_min=1e-8, a_max=None)
        return d

class DimTranspose(transforms.Transform):
    def __init__(self, keys):
        self.keys = keys
    
    def __call__(self, data):
        d = dict(data)
        for key in self.keys:
            d[key] = np.swapaxes(d[key], -1, -3)
        return d

class ForegroundNormalization(transforms.Transform):
    def __init__(self, keys):
        self.keys = keys
    
    def __call__(self, data):
        d = dict(data)
        
        for key in self.keys:
            d[key] = self.normalize(d[key])
        return d
    
    def normalize(self, ct_narray):
        ct_voxel_ndarray = ct_narray.copy()
        ct_voxel_ndarray = ct_voxel_ndarray.flatten()
        thred = np.mean(ct_voxel_ndarray)
        voxel_filtered = ct_voxel_ndarray[(ct_voxel_ndarray > thred)]
        upper_bound = np.percentile(voxel_filtered, 99.95)
        lower_bound = np.percentile(voxel_filtered, 00.05)
        mean = np.mean(voxel_filtered)
        std = np.std(voxel_filtered)
        ### transform ###
        ct_narray = np.clip(ct_narray, lower_bound, upper_bound)
        ct_narray = (ct_narray - mean) / max(std, 1e-8)
        return ct_narray

# prompts
def generate_box(pred_pre, bbox_shift=None):
    meaning_post_label = pred_pre # [h, w, d]
    ones_idx = (meaning_post_label > 0).nonzero(as_tuple=True)
    if all(tensor.nelement() == 0 for tensor in ones_idx):
        bboxes = torch.tensor([-1,-1,-1,-1,-1,-1])
        # print(bboxes, bboxes.shape)
        return bboxes
    min_coords = [dim.min() for dim in ones_idx]    # [x_min, y_min, z_min]
    max_coords = [dim.max() for dim in ones_idx]    # [x_max, y_max, z_max]


    if bbox_shift is None:
        corner_min = []
        corner_max = []
        shape = meaning_post_label.shape
        for coor in min_coords:
            coor_ = max(0, coor)
            corner_min.append(coor_)
        for idx, coor in enumerate(max_coords):
            coor_ = min(shape[idx], coor)
            corner_max.append(coor_)
        corner_min = torch.tensor(corner_min)
        corner_max = torch.tensor(corner_max)
        return torch.cat((corner_min, corner_max), dim=0)
    else:
        # add perturbation to bounding box coordinates
        corner_min = []
        corner_max = []
        shape = meaning_post_label.shape
        for coor in min_coords:
            coor_ = max(0, coor + random.randint(-bbox_shift, bbox_shift))
            corner_min.append(coor_)
        for idx, coor in enumerate(max_coords):
            coor_ = min(shape[idx], coor + random.randint(-bbox_shift, bbox_shift))
            corner_max.append(coor_)
        corner_min = torch.tensor(corner_min)
        corner_max = torch.tensor(corner_max)
        return torch.cat((corner_min, corner_max), dim=0)


def select_points(preds, num_positive_extra=4, num_negative_extra=0, fix_extra_point_num=None):
    spacial_dim = 3
    points = torch.zeros((0, 3))
    labels = torch.zeros((0))
    pos_thred = 0.9
    neg_thred = 0.1
    
    # get pos/net indices
    positive_indices = torch.nonzero(preds > pos_thred, as_tuple=True) # ([pos x], [pos y], [pos z])
    negative_indices = torch.nonzero(preds < neg_thred, as_tuple=True)

    ones_idx = (preds > pos_thred).nonzero(as_tuple=True)
    if all(tmp.nelement() == 0 for tmp in ones_idx):
        # all neg
        num_positive_extra = 0
        selected_positive_point = torch.tensor([-1,-1,-1]).unsqueeze(dim=0)
        points = torch.cat((points, selected_positive_point), dim=0)
        labels = torch.cat((labels, torch.tensor([-1]).reshape(1)))
    else:
        # random select a pos point
        random_idx = torch.randint(len(positive_indices[0]), (1,))
        selected_positive_point = torch.tensor([positive_indices[i][random_idx] for i in range(spacial_dim)]).unsqueeze(dim=0)
        points = torch.cat((points, selected_positive_point), dim=0)
        labels = torch.cat((labels, torch.ones((1))))

    if num_positive_extra > 0:
        pos_idx_list = torch.randperm(len(positive_indices[0]))[:num_positive_extra]
        extra_positive_points = []
        for pos_idx in pos_idx_list:
            extra_positive_points.append([positive_indices[i][pos_idx] for i in range(spacial_dim)])
        extra_positive_points = torch.tensor(extra_positive_points).reshape(-1, 3)
        points = torch.cat((points, extra_positive_points), dim=0)
        labels = torch.cat((labels, torch.ones((extra_positive_points.shape[0]))))

    if num_negative_extra > 0:
        neg_idx_list = torch.randperm(len(negative_indices[0]))[:num_negative_extra]
        extra_negative_points = []
        for neg_idx in neg_idx_list:
            extra_negative_points.append([negative_indices[i][neg_idx] for i in range(spacial_dim)])
        extra_negative_points = torch.tensor(extra_negative_points).reshape(-1, 3)
        points = torch.cat((points, extra_negative_points), dim=0)
        labels = torch.cat((labels, torch.zeros((extra_negative_points.shape[0]))))
        # print('extra_negative_points ', extra_negative_points, extra_negative_points.shape)
        # print('==> points ', points.shape, labels)
    
    if fix_extra_point_num is None:
        left_point_num = num_positive_extra + num_negative_extra + 1 - labels.shape[0]
    else:
        left_point_num = fix_extra_point_num  + 1 - labels.shape[0]

    for _ in range(left_point_num):
        ignore_point = torch.tensor([-1,-1,-1]).unsqueeze(dim=0)
        points = torch.cat((points, ignore_point), dim=0)
        labels = torch.cat((labels, torch.tensor([-1]).reshape(1)))

    return points, labels

# SegVol
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from transformers import AutoTokenizer, CLIPTextModel, CLIPTextConfig
import random

#%% set up model
class SegVol(nn.Module):
    def __init__(self, 
                image_encoder, 
                mask_decoder,
                prompt_encoder,
                roi_size,
                patch_size,
                clip_model,
                test_mode=False,
                ):
        super().__init__()
        self.custom_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.image_encoder = image_encoder
        self.mask_decoder = mask_decoder
        self.prompt_encoder = prompt_encoder
        self.text_encoder = TextEncoder(clip_model)
        self.feat_shape = np.array(roi_size)/np.array(patch_size)
        self.test_mode = test_mode
        self.dice_loss = BinaryDiceLoss().to(self.custom_device)
        self.bce_loss = BCELoss().to(self.custom_device)
        self.decoder_iter = 6

    def forward(self, image, text=None, boxes=None, points=None, **kwargs):
        bs = image.shape[0]
        img_shape = (image.shape[2], image.shape[3], image.shape[4])
        image_embedding, _ = self.image_encoder(image)
        image_embedding = image_embedding.transpose(1, 2).view(bs, -1, 
            int(self.feat_shape[0]), int(self.feat_shape[1]), int(self.feat_shape[2]))
        # test mode
        if self.test_mode:
            return self.forward_decoder(image_embedding, img_shape, text, boxes, points)
        
        # train mode
        ## sl
        sl_loss = self.supervised_forward(image, image_embedding, img_shape, kwargs['train_organs'], kwargs['train_labels'])
        ## ssl
        # ssl_loss = self.unsupervised_forward(image, image_embedding, kwargs['pseudo_seg_cleaned'], img_shape)
        return sl_loss

    def forward_decoder(self, image_embedding, img_shape, text=None, boxes=None, points=None):
        with torch.no_grad():
            if boxes is not None:
                if len(boxes.shape) == 2:
                    boxes = boxes[:, None, :] # (B, 1, 6)
            if text is not None:
                text_embedding = self.text_encoder(text)  # (B, 768)
            else:
                text_embedding = None
        sparse_embeddings, dense_embeddings = self.prompt_encoder(
            points=points,
            boxes=boxes,
            masks=None,
            text_embedding=text_embedding,
        )

        dense_pe = self.prompt_encoder.get_dense_pe()
        low_res_masks, _ = self.mask_decoder(
            image_embeddings=image_embedding,
            text_embedding = text_embedding,
            image_pe=dense_pe,
            sparse_prompt_embeddings=sparse_embeddings,
            dense_prompt_embeddings=dense_embeddings,
            multimask_output=False,
          )
        logits = F.interpolate(low_res_masks, size=img_shape, mode='trilinear', align_corners=False)
        return logits

    def supervised_forward(self, image, image_embedding, img_shape, training_organs, train_labels):
        iter_points, iter_bboxes, iter_organs = self.build_prompt_label(image.shape[0], training_organs, train_labels)
        # select prompt
        prompt_options = [[None, iter_points, iter_organs], [iter_bboxes, None, iter_organs], 
                        [None, None, iter_organs], [iter_bboxes, None, None], [None, iter_points, None],
                        [iter_bboxes, iter_points, None]]
        sl_loss = 0
        for prompt in prompt_options:
            bboxes, points, organs = prompt
            logits = self.forward_decoder(image_embedding, img_shape, text=organs, boxes=bboxes, points=points)
            # cal loss
            sl_loss_dice = self.dice_loss.forward(logits.squeeze().float(), train_labels.squeeze().float())
            sl_loss_bce = self.bce_loss.forward(logits.squeeze().float(), train_labels.squeeze().float())
            sl_loss += sl_loss_dice + sl_loss_bce
        return sl_loss
    
    # def unsupervised_forward(self, image, image_embedding, pseudo_seg_cleaned, img_shape):
    #     sll_loss = 0
    #     for iter in range(self.decoder_iter):
    #         if iter % 2 == 0:
    #             pseudo_labels, pseudo_points_prompt = self.build_pseudo_point_prompt_label(image.shape, pseudo_seg_cleaned)
    #             logits = self.forward_decoder(image_embedding, img_shape, text=None, boxes=None, points=pseudo_points_prompt)
    #         else:
    #             pseudo_labels, pseudo_bboxes_prompt = self.build_pseudo_box_prompt_label(image.shape, pseudo_seg_cleaned)
    #             logits = self.forward_decoder(image_embedding, img_shape, text=None, boxes=pseudo_bboxes_prompt, points=None)
    #         # cal loss
    #         sll_loss_dice = self.dice_loss.forward(logits.squeeze().float(), pseudo_labels.squeeze().float())
    #         sll_loss_bce = self.bce_loss.forward(logits.squeeze().float(), pseudo_labels.squeeze().float())
    #         sll_loss += sll_loss_dice + sll_loss_bce
    #     return sll_loss

    def build_prompt_label(self, bs, training_organs, train_labels):
        # generate prompt & label
        iter_organs = []
        iter_bboxes = []
        iter_points_ax = []
        iter_point_labels = []
        for sample_idx in range(bs):
            # organ prompt
            iter_organs.append(training_organs)
            # box prompt
            box = generate_box(train_labels[sample_idx])
            iter_bboxes.append(box)
            # point prompt
            num_positive_extra_max, num_negative_extra_max = 10, 10
            num_positive_extra = random.randint(0, num_positive_extra_max)
            num_negative_extra = random.randint(0, num_negative_extra_max)
            point, point_label = select_points(
                train_labels[sample_idx],
                num_positive_extra=num_positive_extra,
                num_negative_extra=num_negative_extra,
                fix_extra_point_num=num_positive_extra_max + num_negative_extra_max)
            iter_points_ax.append(point)
            iter_point_labels.append(point_label)
        # batched prompt
        iter_points_ax = torch.stack(iter_points_ax, dim=0).to(self.custom_device)
        iter_point_labels = torch.stack(iter_point_labels, dim=0).to(self.custom_device)
        iter_points = (iter_points_ax, iter_point_labels)
        iter_bboxes = torch.stack(iter_bboxes, dim=0).float().to(self.custom_device)
        return iter_points, iter_bboxes, iter_organs
    
    # def build_pseudo_point_prompt_label(self, input_shape, seg_labels):
    #     pseudo_labels = torch.zeros(input_shape).to(self.custom_device)
    #     # generate points
    #     points = []
    #     point_labels = []
    #     for batch_idx in range(input_shape[0]):
    #         # generate pseudo label
    #         unique_ids = torch.unique(seg_labels[batch_idx])
    #         unique_ids = unique_ids[unique_ids != -1]
    #         region_id = random.choice(unique_ids).item()
    #         pseudo_labels[batch_idx][seg_labels[batch_idx]==region_id] = 1
    #         # generate point prompt
    #         num_positive_extra_max, num_negative_extra_max = 10, 10
    #         num_positive_extra = random.randint(4, num_positive_extra_max)
    #         num_negative_extra = random.randint(0, num_negative_extra_max)
    #         assert len(pseudo_labels[batch_idx][0].shape) == 3
    #         point, point_label = select_points(
    #             pseudo_labels[batch_idx][0],
    #             num_positive_extra=num_positive_extra,
    #             num_negative_extra=num_negative_extra,
    #             fix_extra_point_num=num_positive_extra_max + num_negative_extra_max)
    #         points.append(point)
    #         point_labels.append(point_label)
    #     points = torch.stack(points, dim=0).to(self.custom_device)
    #     point_labels = torch.stack(point_labels, dim=0).to(self.custom_device)
    #     pseudo_points_prompt = (points, point_labels)
    #     return pseudo_labels, pseudo_points_prompt

    # def build_pseudo_box_prompt_label(self, input_shape, seg_labels_cleaned):
    #     pseudo_labels = torch.zeros(input_shape).to(self.custom_device)
    #     iter_bboxes = []
    #     # generate boxes
    #     for batch_idx in range(input_shape[0]):
    #         # generate ori pseudo label
    #         unique_ids = torch.unique(seg_labels_cleaned[batch_idx])
    #         unique_ids = unique_ids[unique_ids != -1]
    #         region_id = random.choice(unique_ids).item()
    #         pseudo_labels[batch_idx][seg_labels_cleaned[batch_idx]==region_id] = 1
    #         # generate box prompt
    #         box = generate_box(pseudo_labels[batch_idx][0])
    #         iter_bboxes.append(box)
    #         # refine pseudo label
    #         x_min, y_min, z_min, x_max, y_max, z_max = box
    #         binary_cube = torch.zeros_like(pseudo_labels[batch_idx][0]).int()
    #         binary_cube[x_min:x_max+1, y_min:y_max+1, z_min:z_max+1] = 1
    #         # cal iou
    #         mask_label = seg_labels_cleaned[batch_idx][0]
    #         assert binary_cube.shape == mask_label.shape, str(binary_cube.shape) + ' ' + str(mask_label.shape)
    #         mask_values_in_binary_cube = mask_label[binary_cube == 1]
    #         unique_mask_values = torch.unique(mask_values_in_binary_cube)
    #         # print('unique_mask_values ', unique_mask_values)
    #         for value in unique_mask_values:
    #             if value == -1: continue
    #             mask_area = (mask_label == value)
    #             intersection = (binary_cube & mask_area)
    #             iou = intersection.float().sum() / mask_area.float().sum()
    #             if iou > 0.90:
    #                 # print(f"Mask value {value} has IOU > 0.90 in binary cube.")
    #                 pseudo_labels[batch_idx][seg_labels_cleaned[batch_idx]==value] = 1

    #     bboxes = torch.stack(iter_bboxes, dim=0).float().to(self.custom_device)
    #     return pseudo_labels, bboxes
    
class TextEncoder(nn.Module):
    def __init__(self, clip_model):
        super().__init__()
        self.custom_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        config = CLIPTextConfig()
        self.clip_text_model = CLIPTextModel(config)
        self.tokenizer = AutoTokenizer.from_pretrained(clip_model)
        self.dim_align = nn.Linear(512, 768)
        # freeze text encoder
        for param in self.clip_text_model.parameters():
            param.requires_grad = False

    def organ2tokens(self, organ_names):
        text_list = ['A computerized tomography of a {}.'.format(organ_name) for organ_name in organ_names]
        tokens = self.tokenizer(text_list, padding=True, return_tensors="pt")
        for key in tokens.keys():
            tokens[key] = tokens[key].to(self.custom_device)
        return tokens
    
    def forward(self, text):
        if text is None:
            return None
        if type(text) is str:
            # text is supposed to be list
            text = [text]
        tokens = self.organ2tokens(text)
        clip_outputs = self.clip_text_model(**tokens)
        text_embedding = clip_outputs.pooler_output
        text_embedding = self.dim_align(text_embedding)
        return text_embedding

# loss
import torch
import torch.nn as nn

class BinaryDiceLoss(nn.Module):
    def __init__(self, smooth=1, p=2, reduction='mean'):
        super(BinaryDiceLoss, self).__init__()
        self.smooth = smooth
        self.p = p
        self.reduction = reduction

    def forward(self, predict, target):
        predict = torch.sigmoid(predict)
        target_ = target.clone()
        target_[target == -1] = 0
        assert predict.shape[0] == target.shape[0], "predict & target batch size don't match\n" + str(predict.shape) + '\n' + str(target.shape[0])
        predict = predict.contiguous().view(predict.shape[0], -1)
        target_ = target_.contiguous().view(target_.shape[0], -1)

        num = torch.sum(torch.mul(predict, target_), dim=1)
        den = torch.sum(predict, dim=1) + torch.sum(target_, dim=1) + self.smooth

        dice_score = 2*num / den
        dice_loss = 1 - dice_score

        # dice_loss_avg = dice_loss[target[:,0]!=-1].sum() / dice_loss[target[:,0]!=-1].shape[0]
        dice_loss_avg = dice_loss.sum() / dice_loss.shape[0]

        return dice_loss_avg

class BCELoss(nn.Module):
    def __init__(self):
        super(BCELoss, self).__init__()
        self.criterion = nn.BCEWithLogitsLoss()

    def forward(self, predict, target):
        assert predict.shape == target.shape, 'predict & target shape do not match\n' + str(predict.shape) + '\n' + str(target.shape)
        target_ = target.clone()
        target_[target == -1] = 0

        ce_loss = self.criterion(predict, target_)

        return ce_loss

# monai inference

# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings
from typing import Any, Callable, Dict, List, Mapping, Sequence, Tuple, Union

import torch
import torch.nn.functional as F
import random

from monai.data.utils import compute_importance_map, dense_patch_slices, get_valid_patch_size
from monai.transforms import Resize
from monai.utils import (
    BlendMode,
    PytorchPadMode,
    convert_data_type,
    ensure_tuple,
    fall_back_tuple,
    look_up_option,
    optional_import,
)

tqdm, _ = optional_import("tqdm", name="tqdm")

__all__ = ["sliding_window_inference"]

def logits2roi_coor(spatial_size, logits_global_single):
    # crop predict
    pred_global_single = torch.sigmoid(logits_global_single) > 0.5
    ## get all pos idx
    nonzero_indices = torch.nonzero(pred_global_single)
    if nonzero_indices.shape[0] == 0:
        return None, None, None, None, None, None
    ## get boundary
    min_d, max_d = nonzero_indices[:, 0].min(), nonzero_indices[:, 0].max()
    min_h, max_h = nonzero_indices[:, 1].min(), nonzero_indices[:, 1].max()
    min_w, max_w = nonzero_indices[:, 2].min(), nonzero_indices[:, 2].max()
    ## padding
    crop_d, crop_h, crop_w = max_d - min_d + 1, max_h - min_h + 1, max_w - min_w + 1,
    window_d, window_h, window_w = spatial_size
    padding_d, padding_h, padding_w = max(0, window_d-crop_d), max(0, window_h-crop_h), max(0, window_w-crop_w)
    global_d, global_h, global_w = logits_global_single.shape
    min_d = max(0, min_d - int(padding_d)//2)
    min_h = max(0, min_h - int(padding_h)//2)
    min_w = max(0, min_w - int(padding_w)//2)
    max_d = min(global_d, max_d + int(padding_d)//2)
    max_h = min(global_h, max_h + int(padding_h)//2)
    max_w = min(global_w, max_w + int(padding_w)//2)
    return min_d, min_h, min_w, max_d, max_h, max_w

def build_binary_cube(bbox, binary_cube_shape):
    min_coord = bbox[0][:3].int().tolist()
    max_coord = bbox[0][3:].int().tolist()
    binary_cube = torch.zeros(binary_cube_shape)
    binary_cube[min_coord[0]:max_coord[0]+1, min_coord[1]:max_coord[1]+1, min_coord[2]:max_coord[2]+1] = 1
    return binary_cube

def build_binary_points(points, labels, shape):
    binary_points = torch.zeros(shape, dtype=torch.int16)
    binary_points[points[labels == 1, 0].long(), points[labels == 1, 1].long(), points[labels == 1, 2].long()] = 1
    return binary_points

def sliding_window_inference(
    inputs: torch.Tensor,
    prompt_reflection: Union[torch.Tensor, Tuple[torch.Tensor, ...]],
    roi_size: Union[Sequence[int], int],
    sw_batch_size: int,
    predictor: Callable[..., Union[torch.Tensor, Sequence[torch.Tensor], Dict[Any, torch.Tensor]]],
    overlap: float = 0.25,
    mode: Union[BlendMode, str] = BlendMode.CONSTANT,
    sigma_scale: Union[Sequence[float], float] = 0.125,
    padding_mode: Union[PytorchPadMode, str] = PytorchPadMode.CONSTANT,
    cval: float = 0.0,
    sw_device: Union[torch.device, str, None] = None,
    device: Union[torch.device, str, None] = None,
    progress: bool = False,
    roi_weight_map: Union[torch.Tensor, None] = None,
    *args: Any,
    **kwargs: Any,
) -> Union[torch.Tensor, Tuple[torch.Tensor, ...], Dict[Any, torch.Tensor]]:
    """
    Sliding window inference on `inputs` with `predictor`.

    The outputs of `predictor` could be a tensor, a tuple, or a dictionary of tensors.
    Each output in the tuple or dict value is allowed to have different resolutions with respect to the input.
    e.g., the input patch spatial size is [128,128,128], the output (a tuple of two patches) patch sizes
    could be ([128,64,256], [64,32,128]).
    In this case, the parameter `overlap` and `roi_size` need to be carefully chosen to ensure the output ROI is still
    an integer. If the predictor's input and output spatial sizes are not equal, we recommend choosing the parameters
    so that `overlap*roi_size*output_size/input_size` is an integer (for each spatial dimension).

    When roi_size is larger than the inputs' spatial size, the input image are padded during inference.
    To maintain the same spatial sizes, the output image will be cropped to the original input size.

    Args:
        inputs: input image to be processed (assuming NCHW[D])
        roi_size: the spatial window size for inferences.
            When its components have None or non-positives, the corresponding inputs dimension will be used.
            if the components of the `roi_size` are non-positive values, the transform will use the
            corresponding components of img size. For example, `roi_size=(32, -1)` will be adapted
            to `(32, 64)` if the second spatial dimension size of img is `64`.
        sw_batch_size: the batch size to run window slices.
        predictor: given input tensor ``patch_data`` in shape NCHW[D],
            The outputs of the function call ``predictor(patch_data)`` should be a tensor, a tuple, or a dictionary
            with Tensor values. Each output in the tuple or dict value should have the same batch_size, i.e. NM'H'W'[D'];
            where H'W'[D'] represents the output patch's spatial size, M is the number of output channels,
            N is `sw_batch_size`, e.g., the input shape is (7, 1, 128,128,128),
            the output could be a tuple of two tensors, with shapes: ((7, 5, 128, 64, 256), (7, 4, 64, 32, 128)).
            In this case, the parameter `overlap` and `roi_size` need to be carefully chosen
            to ensure the scaled output ROI sizes are still integers.
            If the `predictor`'s input and output spatial sizes are different,
            we recommend choosing the parameters so that ``overlap*roi_size*zoom_scale`` is an integer for each dimension.
        overlap: Amount of overlap between scans.
        mode: {``"constant"``, ``"gaussian"``}
            How to blend output of overlapping windows. Defaults to ``"constant"``.

            - ``"constant``": gives equal weight to all predictions.
            - ``"gaussian``": gives less weight to predictions on edges of windows.

        sigma_scale: the standard deviation coefficient of the Gaussian window when `mode` is ``"gaussian"``.
            Default: 0.125. Actual window sigma is ``sigma_scale`` * ``dim_size``.
            When sigma_scale is a sequence of floats, the values denote sigma_scale at the corresponding
            spatial dimensions.
        padding_mode: {``"constant"``, ``"reflect"``, ``"replicate"``, ``"circular"``}
            Padding mode for ``inputs``, when ``roi_size`` is larger than inputs. Defaults to ``"constant"``
            See also: https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html
        cval: fill value for 'constant' padding mode. Default: 0
        sw_device: device for the window data.
            By default the device (and accordingly the memory) of the `inputs` is used.
            Normally `sw_device` should be consistent with the device where `predictor` is defined.
        device: device for the stitched output prediction.
            By default the device (and accordingly the memory) of the `inputs` is used. If for example
            set to device=torch.device('cpu') the gpu memory consumption is less and independent of the
            `inputs` and `roi_size`. Output is on the `device`.
        progress: whether to print a `tqdm` progress bar.
        roi_weight_map: pre-computed (non-negative) weight map for each ROI.
            If not given, and ``mode`` is not `constant`, this map will be computed on the fly.
        args: optional args to be passed to ``predictor``.
        kwargs: optional keyword args to be passed to ``predictor``.

    Note:
        - input must be channel-first and have a batch dim, supports N-D sliding window.

    """
    print('sliding window inference for ROI')
    text = kwargs['text']
    use_box = kwargs['use_box']
    use_point = kwargs['use_point']
    assert not (use_box and use_point)
    compute_dtype = inputs.dtype
    num_spatial_dims = len(inputs.shape) - 2
    if overlap < 0 or overlap >= 1:
        raise ValueError("overlap must be >= 0 and < 1.")

    # determine image spatial size and batch size
    # Note: all input images must have the same image size and batch size
    batch_size, _, *image_size_ = inputs.shape

    if device is None:
        device = inputs.device
    if sw_device is None:
        sw_device = inputs.device

    roi_size = fall_back_tuple(roi_size, image_size_)
    # in case that image size is smaller than roi size
    image_size = tuple(max(image_size_[i], roi_size[i]) for i in range(num_spatial_dims))
    pad_size = []
    for k in range(len(inputs.shape) - 1, 1, -1):
        diff = max(roi_size[k - 2] - inputs.shape[k], 0)
        half = diff // 2
        pad_size.extend([half, diff - half])
    inputs = F.pad(inputs, pad=pad_size, mode=look_up_option(padding_mode, PytorchPadMode).value, value=cval)
    #############
    if use_point or use_box:
        binary_prompt_map, global_preds = prompt_reflection
        global_preds = F.pad(global_preds, pad=pad_size, mode=look_up_option(padding_mode, PytorchPadMode).value, value=cval)
    #############
    scan_interval = _get_scan_interval(image_size, roi_size, num_spatial_dims, overlap)

    # Store all slices in list
    slices = dense_patch_slices(image_size, roi_size, scan_interval)
    num_win = len(slices)  # number of windows per image
    total_slices = num_win * batch_size  # total number of windows

    # Create window-level importance map
    valid_patch_size = get_valid_patch_size(image_size, roi_size)
    if valid_patch_size == roi_size and (roi_weight_map is not None):
        importance_map = roi_weight_map
    else:
        try:
            importance_map = compute_importance_map(valid_patch_size, mode=mode, sigma_scale=sigma_scale, device=device)
        except BaseException as e:
            raise RuntimeError(
                "Seems to be OOM. Please try smaller patch size or mode='constant' instead of mode='gaussian'."
            ) from e
    importance_map = convert_data_type(importance_map, torch.Tensor, device, compute_dtype)[0]  # type: ignore
    # handle non-positive weights
    min_non_zero = max(importance_map[importance_map != 0].min().item(), 1e-3)
    importance_map = torch.clamp(importance_map.to(torch.float32), min=min_non_zero).to(compute_dtype)

    # Perform predictions
    dict_key, output_image_list, count_map_list = None, [], []
    _initialized_ss = -1
    is_tensor_output = True  # whether the predictor's output is a tensor (instead of dict/tuple)

    # for each patch
    for slice_g in tqdm(range(0, total_slices, sw_batch_size)) if progress else range(0, total_slices, sw_batch_size):
        slice_range = range(slice_g, min(slice_g + sw_batch_size, total_slices))
        unravel_slice = [
            [slice(int(idx / num_win), int(idx / num_win) + 1), slice(None)] + list(slices[idx % num_win])
            for idx in slice_range
        ]
        window_data = torch.cat([inputs[win_slice] for win_slice in unravel_slice]).to(sw_device)
        #############
        
        boxes = None
        points = None
        if use_point:
            window_binary_prompt_map = torch.cat([binary_prompt_map[win_slice] for win_slice in unravel_slice]).to(sw_device)
            point, point_label = select_points(window_binary_prompt_map.squeeze())
            points = (point.unsqueeze(0).float().to(device), point_label.unsqueeze(0).float().to(device))  
            pseudo_label = torch.cat([global_preds[win_slice] for win_slice in unravel_slice]).to(sw_device)
            boxes = generate_box(pseudo_label.squeeze()).unsqueeze(0).float().to(device)
        if use_box:
            if num_win == 1:
                window_binary_prompt_map = torch.cat([binary_prompt_map[win_slice] for win_slice in unravel_slice]).to(sw_device)
                boxes = generate_box(window_binary_prompt_map.squeeze()).unsqueeze(0).float().to(device)
            else:
                pseudo_label = torch.cat([global_preds[win_slice] for win_slice in unravel_slice]).to(sw_device)
                boxes = generate_box(pseudo_label.squeeze()).unsqueeze(0).float().to(device)
        seg_prob_out = predictor(window_data, text, boxes, points)  # batched patch segmentation
        #############
        # convert seg_prob_out to tuple seg_prob_tuple, this does not allocate new memory.
        seg_prob_tuple: Tuple[torch.Tensor, ...]
        if isinstance(seg_prob_out, torch.Tensor):
            seg_prob_tuple = (seg_prob_out,)
        elif isinstance(seg_prob_out, Mapping):
            if dict_key is None:
                dict_key = sorted(seg_prob_out.keys())  # track predictor's output keys
            seg_prob_tuple = tuple(seg_prob_out[k] for k in dict_key)
            is_tensor_output = False
        else:
            seg_prob_tuple = ensure_tuple(seg_prob_out)
            is_tensor_output = False

        # for each output in multi-output list
        for ss, seg_prob in enumerate(seg_prob_tuple):
            seg_prob = seg_prob.to(device)  # BxCxMxNxP or BxCxMxN

            # compute zoom scale: out_roi_size/in_roi_size
            zoom_scale = []
            for axis, (img_s_i, out_w_i, in_w_i) in enumerate(
                zip(image_size, seg_prob.shape[2:], window_data.shape[2:])
            ):
                _scale = out_w_i / float(in_w_i)
                if not (img_s_i * _scale).is_integer():
                    warnings.warn(
                        f"For spatial axis: {axis}, output[{ss}] will have non-integer shape. Spatial "
                        f"zoom_scale between output[{ss}] and input is {_scale}. Please pad inputs."
                    )
                zoom_scale.append(_scale)

            if _initialized_ss < ss:  # init. the ss-th buffer at the first iteration
                # construct multi-resolution outputs
                output_classes = seg_prob.shape[1]
                output_shape = [batch_size, output_classes] + [
                    int(image_size_d * zoom_scale_d) for image_size_d, zoom_scale_d in zip(image_size, zoom_scale)
                ]
                # allocate memory to store the full output and the count for overlapping parts
                output_image_list.append(torch.zeros(output_shape, dtype=compute_dtype, device=device))
                count_map_list.append(torch.zeros([1, 1] + output_shape[2:], dtype=compute_dtype, device=device))
                _initialized_ss += 1

            # resizing the importance_map
            resizer = Resize(spatial_size=seg_prob.shape[2:], mode="nearest", anti_aliasing=False)

            # store the result in the proper location of the full output. Apply weights from importance map.
            for idx, original_idx in zip(slice_range, unravel_slice):
                # zoom roi
                original_idx_zoom = list(original_idx)  # 4D for 2D image, 5D for 3D image
                for axis in range(2, len(original_idx_zoom)):
                    zoomed_start = original_idx[axis].start * zoom_scale[axis - 2]
                    zoomed_end = original_idx[axis].stop * zoom_scale[axis - 2]
                    if not zoomed_start.is_integer() or (not zoomed_end.is_integer()):
                        warnings.warn(
                            f"For axis-{axis-2} of output[{ss}], the output roi range is not int. "
                            f"Input roi range is ({original_idx[axis].start}, {original_idx[axis].stop}). "
                            f"Spatial zoom_scale between output[{ss}] and input is {zoom_scale[axis - 2]}. "
                            f"Corresponding output roi range is ({zoomed_start}, {zoomed_end}).\n"
                            f"Please change overlap ({overlap}) or roi_size ({roi_size[axis-2]}) for axis-{axis-2}. "
                            "Tips: if overlap*roi_size*zoom_scale is an integer, it usually works."
                        )
                    original_idx_zoom[axis] = slice(int(zoomed_start), int(zoomed_end), None)
                importance_map_zoom = resizer(importance_map.unsqueeze(0))[0].to(compute_dtype)
                # store results and weights
                output_image_list[ss][original_idx_zoom] += importance_map_zoom * seg_prob[idx - slice_g]
                count_map_list[ss][original_idx_zoom] += (
                    importance_map_zoom.unsqueeze(0).unsqueeze(0).expand(count_map_list[ss][original_idx_zoom].shape)
                )

    # account for any overlapping sections
    for ss in range(len(output_image_list)):
        output_image_list[ss] = (output_image_list[ss] / count_map_list.pop(0)).to(compute_dtype)

    # remove padding if image_size smaller than roi_size
    for ss, output_i in enumerate(output_image_list):
        if torch.isnan(output_i).any() or torch.isinf(output_i).any():
            warnings.warn("Sliding window inference results contain NaN or Inf.")

        zoom_scale = [
            seg_prob_map_shape_d / roi_size_d for seg_prob_map_shape_d, roi_size_d in zip(output_i.shape[2:], roi_size)
        ]

        final_slicing: List[slice] = []
        for sp in range(num_spatial_dims):
            slice_dim = slice(pad_size[sp * 2], image_size_[num_spatial_dims - sp - 1] + pad_size[sp * 2])
            slice_dim = slice(
                int(round(slice_dim.start * zoom_scale[num_spatial_dims - sp - 1])),
                int(round(slice_dim.stop * zoom_scale[num_spatial_dims - sp - 1])),
            )
            final_slicing.insert(0, slice_dim)
        while len(final_slicing) < len(output_i.shape):
            final_slicing.insert(0, slice(None))
        output_image_list[ss] = output_i[final_slicing]

    if dict_key is not None:  # if output of predictor is a dict
        final_output = dict(zip(dict_key, output_image_list))
    else:
        final_output = tuple(output_image_list)  # type: ignore
    return final_output[0] if is_tensor_output else final_output  # type: ignore


def _get_scan_interval(
    image_size: Sequence[int], roi_size: Sequence[int], num_spatial_dims: int, overlap: float
) -> Tuple[int, ...]:
    """
    Compute scan interval according to the image size, roi size and overlap.
    Scan interval will be `int((1 - overlap) * roi_size)`, if interval is 0,
    use 1 instead to make sure sliding window works.

    """
    if len(image_size) != num_spatial_dims:
        raise ValueError("image coord different from spatial dims.")
    if len(roi_size) != num_spatial_dims:
        raise ValueError("roi coord different from spatial dims.")

    scan_interval = []
    for i in range(num_spatial_dims):
        if roi_size[i] == image_size[i]:
            scan_interval.append(int(roi_size[i]))
        else:
            interval = int(roi_size[i] * (1 - overlap))
            scan_interval.append(interval if interval > 0 else 1)
    return tuple(scan_interval)

# build 3D SAM
import torch
import numpy as np
from monai.networks.nets import ViT

def _build_sam(
    image_encoder_type,
    embed_dim,
    patch_size,
    checkpoint,
    image_size,
):
    mlp_dim = 3072
    num_layers = 12
    num_heads = 12
    pos_embed = 'perceptron'
    dropout_rate = 0.0
    
    image_encoder=ViT(
        in_channels=1,
        img_size=image_size,
        patch_size=patch_size,
        hidden_size=embed_dim,
        mlp_dim=mlp_dim,
        num_layers=num_layers,
        num_heads=num_heads,
        pos_embed=pos_embed,
        classification=False,
        dropout_rate=dropout_rate,
    )
    image_embedding_size = [int(item) for item in (np.array(image_size) / np.array(patch_size))]

    if checkpoint is not None:
        with open(checkpoint, "rb") as f:
            state_dict = torch.load(f, map_location='cpu')['state_dict']
            encoder_dict = {k.replace('model.encoder.', ''): v for k, v in state_dict.items() if 'model.encoder.' in k}
        image_encoder.load_state_dict(encoder_dict)
        print(f'===> image_encoder.load_param: {checkpoint}')
    sam = Sam(
        image_encoder=image_encoder,
        prompt_encoder=PromptEncoder(
            embed_dim=embed_dim,
            image_embedding_size=image_embedding_size,
            input_image_size=image_size,
            mask_in_chans=16,
        ),
        mask_decoder=MaskDecoder(
            image_encoder_type=image_encoder_type,
            num_multimask_outputs=3,
            transformer=TwoWayTransformer(
                depth=2,
                embedding_dim=embed_dim,
                mlp_dim=2048,
                num_heads=8,
            ),
            transformer_dim=embed_dim,
            iou_head_depth=3,
            iou_head_hidden_dim=256,
            image_size=np.array(image_size),
            patch_size=np.array(patch_size),
        ),
        pixel_mean=[123.675, 116.28, 103.53],
        pixel_std=[58.395, 57.12, 57.375],
    )
    sam.eval()
    return sam

# mask decoder
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch
from torch import nn
from torch.nn import functional as F

from typing import List, Tuple, Type, Optional

class MaskDecoder(nn.Module):
    def __init__(
        self,
        *,
        image_encoder_type: str,
        transformer_dim: int,
        transformer: nn.Module,
        num_multimask_outputs: int = 3,
        activation: Type[nn.Module] = nn.GELU,
        iou_head_depth: int = 3,
        iou_head_hidden_dim: int = 256,
        image_size,
        patch_size,
    ) -> None:
        """
        Predicts masks given an image and prompt embeddings, using a
        transformer architecture.

        Arguments:
          transformer_dim (int): the channel dimension of the transformer
          transformer (nn.Module): the transformer used to predict masks
          num_multimask_outputs (int): the number of masks to predict
            when disambiguating masks
          activation (nn.Module): the type of activation to use when
            upscaling masks
          iou_head_depth (int): the depth of the MLP used to predict
            mask quality
          iou_head_hidden_dim (int): the hidden dimension of the MLP
            used to predict mask quality
        """
        super().__init__()
        self.transformer_dim = transformer_dim
        self.transformer = transformer

        self.num_multimask_outputs = num_multimask_outputs

        self.iou_token = nn.Embedding(1, transformer_dim)
        self.num_mask_tokens = num_multimask_outputs + 1
        self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)

        if image_encoder_type == 'swin_vit':
            self.feat_shape = image_size/patch_size
            self.output_upscaling = nn.Sequential(
                nn.ConvTranspose3d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
                nn.LayerNorm((transformer_dim // 4, int(self.feat_shape[0]), int(self.feat_shape[1]), int(self.feat_shape[2]))),    # swin
                activation(),
                nn.ConvTranspose3d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),        # swin
                # nn.Conv3d(transformer_dim // 4, transformer_dim // 8, kernel_size=3, stride=1, padding=1),    # vit
                activation(),
            )
        else:
            self.feat_shape = image_size/patch_size * 2
            self.output_upscaling = nn.Sequential(
                nn.ConvTranspose3d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
                nn.LayerNorm((transformer_dim // 4, int(self.feat_shape[0]), int(self.feat_shape[1]), int(self.feat_shape[2]))), # vit
                activation(),
                nn.ConvTranspose3d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
                # nn.Conv3d(transformer_dim // 4, transformer_dim // 8, kernel_size=3, stride=1, padding=1),
                activation(),
            )
        self.output_hypernetworks_mlps = nn.ModuleList(
            [
                MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
                for i in range(self.num_mask_tokens)
            ]
        )

        self.iou_prediction_head = MLP(
            transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
        )

        self.txt_align_upscaled_embedding = nn.Linear(768, 96)

    def forward(
        self,
        image_embeddings: torch.Tensor,
        text_embedding: Optional[torch.Tensor],
        image_pe: torch.Tensor,
        sparse_prompt_embeddings: torch.Tensor,
        dense_prompt_embeddings: torch.Tensor,
        multimask_output: bool,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Predict masks given image and prompt embeddings.

        Returns:
          torch.Tensor: batched predicted masks
        """
        # print('--------------decoder here--------------')
        masks, iou_pred = self.predict_masks(
            image_embeddings=image_embeddings,
            text_embedding=text_embedding,
            image_pe=image_pe,
            sparse_prompt_embeddings=sparse_prompt_embeddings,
            dense_prompt_embeddings=dense_prompt_embeddings,
        )

        # Select the correct mask or masks for output
        if multimask_output:
            mask_slice = slice(1, None)
        else:
            mask_slice = slice(0, 1)
        masks = masks[:, mask_slice, :, :, :]
        iou_pred = iou_pred[:, mask_slice]

        # Prepare output
        return masks, iou_pred

    def predict_masks(
        self,
        image_embeddings: torch.Tensor,
        text_embedding: torch.Tensor,
        image_pe: torch.Tensor,
        sparse_prompt_embeddings: torch.Tensor,
        dense_prompt_embeddings: torch.Tensor,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Predicts masks. See 'forward' for more details."""
        # Concatenate output tokens
        output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
        output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
        tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
        # Expand per-image data in batch direction to be per-mask
        if image_embeddings.shape[0] != tokens.shape[0]:
            src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
        else:
            src = image_embeddings
        src = src + dense_prompt_embeddings
        pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
        b, c, h, w, d = src.shape

        # Run the transformer
        hs, src = self.transformer(src, pos_src, tokens)
        iou_token_out = hs[:, 0, :]
        mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]

        # Upscale mask embeddings and predict masks using the mask tokens
        src = src.transpose(1, 2).view(b, c, h, w, d)
        upscaled_embedding = self.output_upscaling(src)
        hyper_in_list: List[torch.Tensor] = []
        for i in range(self.num_mask_tokens):
            hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
        hyper_in = torch.stack(hyper_in_list, dim=1)
        b, c, h, w, d = upscaled_embedding.shape
        masks = (hyper_in @ upscaled_embedding.view(b, c, h * w * d)).view(b, -1, h, w, d)
        
        if text_embedding is not None:
            text_embedding_down = self.txt_align_upscaled_embedding(text_embedding).unsqueeze(dim=1)
            upscaled_embedding = upscaled_embedding.view(b, c, h * w * d)
            sim = (text_embedding_down @ upscaled_embedding).view(b, -1, h, w, d)
            sim = sim.repeat(1, masks.shape[1], 1, 1, 1)
            masks = masks + sim
        iou_pred = self.iou_prediction_head(iou_token_out)

        return masks, iou_pred

# Lightly adapted from
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
class MLP(nn.Module):
    def __init__(
        self,
        input_dim: int,
        hidden_dim: int,
        output_dim: int,
        num_layers: int,
        sigmoid_output: bool = False,
    ) -> None:
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(
            nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
        )
        self.sigmoid_output = sigmoid_output

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
        if self.sigmoid_output:
            x = F.sigmoid(x)
        return x

# prompt encoder
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import numpy as np
import torch
from torch import nn

from typing import Any, Optional, Tuple, Type

class PromptEncoder(nn.Module):
    def __init__(
        self,
        embed_dim: int,
        image_embedding_size: Tuple[int, int, int],
        input_image_size: Tuple[int, int, int],
        mask_in_chans: int,
        activation: Type[nn.Module] = nn.GELU,
    ) -> None:
        """
        Encodes prompts for input to SAM's mask decoder.

        Arguments:
          embed_dim (int): The prompts' embedding dimension
          image_embedding_size (tuple(int, int)): The spatial size of the
            image embedding, as (H, W).
          input_image_size (int): The padded size of the image as input
            to the image encoder, as (H, W).
          mask_in_chans (int): The number of hidden channels used for
            encoding input masks.
          activation (nn.Module): The activation to use when encoding
            input masks.
        """
        super().__init__()
        self.embed_dim = embed_dim
        self.input_image_size = input_image_size
        self.image_embedding_size = image_embedding_size
        self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)

        self.num_point_embeddings: int = 4  # pos/neg point + 2 box corners
        point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
        self.point_embeddings = nn.ModuleList(point_embeddings)
        self.not_a_point_embed = nn.Embedding(1, embed_dim)

        self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1], 4 * image_embedding_size[2])
        self.mask_downscaling = nn.Sequential(
            nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
            LayerNorm2d(mask_in_chans // 4),
            activation(),
            nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
            LayerNorm2d(mask_in_chans),
            activation(),
            nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
        )
        self.no_mask_embed = nn.Embedding(1, embed_dim)

    def get_dense_pe(self) -> torch.Tensor:
        """
        Returns the positional encoding used to encode point prompts,
        applied to a dense set of points the shape of the image encoding.

        Returns:
          torch.Tensor: Positional encoding with shape
            1x(embed_dim)x(embedding_h)x(embedding_w)
        """
        return self.pe_layer(self.image_embedding_size).unsqueeze(0)

    def _embed_points(
        self,
        points: torch.Tensor,
        labels: torch.Tensor,
        pad: bool,
    ) -> torch.Tensor:
        """Embeds point prompts."""
        points = points + 0.5  # Shift to center of pixel
        if pad:
            padding_point = torch.zeros((points.shape[0], 1, 3), device=points.device)
            padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
            points = torch.cat([points, padding_point], dim=1)
            labels = torch.cat([labels, padding_label], dim=1)
        point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
        point_embedding[labels == -1] = 0.0
        point_embedding[labels == -1] += self.not_a_point_embed.weight
        point_embedding[labels == 0] += self.point_embeddings[0].weight
        point_embedding[labels == 1] += self.point_embeddings[1].weight
        return point_embedding

    def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
        """Embeds box prompts."""
        boxes = boxes + 0.5  # Shift to center of pixel
        coords = boxes.reshape(-1, 2, 3)
        corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
        corner_embedding[:, 0, :] += self.point_embeddings[2].weight
        corner_embedding[:, 1, :] += self.point_embeddings[3].weight
        return corner_embedding

    def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
        """Embeds mask inputs."""
        mask_embedding = self.mask_downscaling(masks)
        return mask_embedding

    def _get_batch_size(
        self,
        points: Optional[Tuple[torch.Tensor, torch.Tensor]],
        boxes: Optional[torch.Tensor],
        masks: Optional[torch.Tensor],
        text_embedding: Optional[torch.Tensor],
    ) -> int:
        """
        Gets the batch size of the output given the batch size of the input prompts.
        """
        if points is not None:
            return points[0].shape[0]
        elif boxes is not None:
            return boxes.shape[0]
        elif masks is not None:
            return masks.shape[0]
        elif text_embedding is not None:
            return text_embedding.shape[0]
        else:
            return 1

    def _get_device(self) -> torch.device:
        return self.point_embeddings[0].weight.device

    def forward(
        self,
        points: Optional[Tuple[torch.Tensor, torch.Tensor]],
        boxes: Optional[torch.Tensor],
        masks: Optional[torch.Tensor],
        text_embedding: Optional[torch.Tensor],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        
        bs = self._get_batch_size(points, boxes, masks, text_embedding)
        sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())

        if points is not None:
            coords, labels = points
            point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
            sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
        
        if boxes is not None:
            box_embeddings = self._embed_boxes(boxes)
            sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
        
        if text_embedding is not None:
            sparse_embeddings = torch.cat([sparse_embeddings, text_embedding.unsqueeze(dim=1)], dim=1)
        
        if masks is not None:
            dense_embeddings = self._embed_masks(masks)
        else:
            dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1, 1).expand(
                bs, -1, int(self.image_embedding_size[0]), int(self.image_embedding_size[1]), int(self.image_embedding_size[2])
            )

        return sparse_embeddings, dense_embeddings


class PositionEmbeddingRandom(nn.Module):
    """
    Positional encoding using random spatial frequencies.
    """

    def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
        super().__init__()
        if scale is None or scale <= 0.0:
            scale = 1.0
        self.register_buffer(
            "positional_encoding_gaussian_matrix",
            scale * torch.randn((3, num_pos_feats)),
        )

    def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
        """Positionally encode points that are normalized to [0,1]."""
        # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
        coords = 2 * coords - 1
        coords = coords @ self.positional_encoding_gaussian_matrix
        coords = 2 * np.pi * coords
        # outputs d_1 x ... x d_n x C shape
        return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)

    def forward(self, size: Tuple[int, int, int]) -> torch.Tensor:
        """Generate positional encoding for a grid of the specified size."""
        h, w, d = size
        device: Any = self.positional_encoding_gaussian_matrix.device
        grid = torch.ones((h, w, d), device=device, dtype=torch.float32)
        y_embed = grid.cumsum(dim=0) - 0.5
        x_embed = grid.cumsum(dim=1) - 0.5
        z_embed = grid.cumsum(dim=2) - 0.5
        y_embed = y_embed / h
        x_embed = x_embed / w
        z_embed = z_embed / d

        pe = self._pe_encoding(torch.stack([x_embed, y_embed, z_embed], dim=-1))
        return pe.permute(3, 0, 1, 2)  # C x H x W x D

    def forward_with_coords(
        self, coords_input: torch.Tensor, image_size: Tuple[int, int]
    ) -> torch.Tensor:
        """Positionally encode points that are not normalized to [0,1]."""
        coords = coords_input.clone()
        coords[:, :, 0] = coords[:, :, 0] / image_size[1]
        coords[:, :, 1] = coords[:, :, 1] / image_size[0]
        coords[:, :, 2] = coords[:, :, 2] / image_size[2]
        return self._pe_encoding(coords.to(torch.float))  # B x N x C

# two way transformer
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch
from torch import Tensor, nn

import math
from typing import Tuple, Type

class TwoWayTransformer(nn.Module):
    def __init__(
        self,
        depth: int,
        embedding_dim: int,
        num_heads: int,
        mlp_dim: int,
        activation: Type[nn.Module] = nn.ReLU,
        attention_downsample_rate: int = 2,
    ) -> None:
        """
        A transformer decoder that attends to an input image using
        queries whose positional embedding is supplied.

        Args:
          depth (int): number of layers in the transformer
          embedding_dim (int): the channel dimension for the input embeddings
          num_heads (int): the number of heads for multihead attention. Must
            divide embedding_dim
          mlp_dim (int): the channel dimension internal to the MLP block
          activation (nn.Module): the activation to use in the MLP block
        """
        super().__init__()
        self.depth = depth
        self.embedding_dim = embedding_dim
        self.num_heads = num_heads
        self.mlp_dim = mlp_dim
        self.layers = nn.ModuleList()

        for i in range(depth):
            self.layers.append(
                TwoWayAttentionBlock(
                    embedding_dim=embedding_dim,
                    num_heads=num_heads,
                    mlp_dim=mlp_dim,
                    activation=activation,
                    attention_downsample_rate=attention_downsample_rate,
                    skip_first_layer_pe=(i == 0),
                )
            )

        self.final_attn_token_to_image = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )
        self.norm_final_attn = nn.LayerNorm(embedding_dim)

    def forward(
        self,
        image_embedding: Tensor,
        image_pe: Tensor,
        point_embedding: Tensor,
    ) -> Tuple[Tensor, Tensor]:
        """
        Args:
          image_embedding (torch.Tensor): image to attend to. Should be shape
            B x embedding_dim x h x w for any h and w.
          image_pe (torch.Tensor): the positional encoding to add to the image. Must
            have the same shape as image_embedding.
          point_embedding (torch.Tensor): the embedding to add to the query points.
            Must have shape B x N_points x embedding_dim for any N_points.

        Returns:
          torch.Tensor: the processed point_embedding
          torch.Tensor: the processed image_embedding
        """
        # BxCxHxW -> BxHWxC == B x N_image_tokens x C
        bs, c, h, w, d = image_embedding.shape
        image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
        image_pe = image_pe.flatten(2).permute(0, 2, 1)

        # Prepare queries
        queries = point_embedding
        keys = image_embedding

        # Apply transformer blocks and final layernorm
        for layer in self.layers:
            queries, keys = layer(
                queries=queries,
                keys=keys,
                query_pe=point_embedding,
                key_pe=image_pe,
            )

        # Apply the final attention layer from the points to the image
        q = queries + point_embedding
        k = keys + image_pe
        attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
        queries = queries + attn_out
        queries = self.norm_final_attn(queries)

        return queries, keys


class TwoWayAttentionBlock(nn.Module):
    def __init__(
        self,
        embedding_dim: int,
        num_heads: int,
        mlp_dim: int = 2048,
        activation: Type[nn.Module] = nn.ReLU,
        attention_downsample_rate: int = 2,
        skip_first_layer_pe: bool = False,
    ) -> None:
        """
        A transformer block with four layers: (1) self-attention of sparse
        inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
        block on sparse inputs, and (4) cross attention of dense inputs to sparse
        inputs.

        Arguments:
          embedding_dim (int): the channel dimension of the embeddings
          num_heads (int): the number of heads in the attention layers
          mlp_dim (int): the hidden dimension of the mlp block
          activation (nn.Module): the activation of the mlp block
          skip_first_layer_pe (bool): skip the PE on the first layer
        """
        super().__init__()
        self.self_attn = Attention(embedding_dim, num_heads)
        self.norm1 = nn.LayerNorm(embedding_dim)

        self.cross_attn_token_to_image = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )
        self.norm2 = nn.LayerNorm(embedding_dim)

        self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
        self.norm3 = nn.LayerNorm(embedding_dim)

        self.norm4 = nn.LayerNorm(embedding_dim)
        self.cross_attn_image_to_token = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )

        self.skip_first_layer_pe = skip_first_layer_pe

    def forward(
        self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
    ) -> Tuple[Tensor, Tensor]:
        # Self attention block
        if self.skip_first_layer_pe:
            queries = self.self_attn(q=queries, k=queries, v=queries)
        else:
            q = queries + query_pe
            attn_out = self.self_attn(q=q, k=q, v=queries)
            queries = queries + attn_out
        queries = self.norm1(queries)

        # Cross attention block, tokens attending to image embedding
        q = queries + query_pe
        k = keys + key_pe
        attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
        queries = queries + attn_out
        queries = self.norm2(queries)

        # MLP block
        mlp_out = self.mlp(queries)
        queries = queries + mlp_out
        queries = self.norm3(queries)

        # Cross attention block, image embedding attending to tokens
        q = queries + query_pe
        k = keys + key_pe
        attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
        keys = keys + attn_out
        keys = self.norm4(keys)

        return queries, keys


class Attention(nn.Module):
    """
    An attention layer that allows for downscaling the size of the embedding
    after projection to queries, keys, and values.
    """

    def __init__(
        self,
        embedding_dim: int,
        num_heads: int,
        downsample_rate: int = 1,
    ) -> None:
        super().__init__()
        self.embedding_dim = embedding_dim
        self.internal_dim = embedding_dim // downsample_rate
        self.num_heads = num_heads
        assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."

        self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.out_proj = nn.Linear(self.internal_dim, embedding_dim)

    def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
        b, n, c = x.shape
        x = x.reshape(b, n, num_heads, c // num_heads)
        return x.transpose(1, 2)  # B x N_heads x N_tokens x C_per_head

    def _recombine_heads(self, x: Tensor) -> Tensor:
        b, n_heads, n_tokens, c_per_head = x.shape
        x = x.transpose(1, 2)
        return x.reshape(b, n_tokens, n_heads * c_per_head)  # B x N_tokens x C

    def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
        # Input projections
        q = self.q_proj(q)
        k = self.k_proj(k)
        v = self.v_proj(v)

        # Separate into heads
        q = self._separate_heads(q, self.num_heads)
        k = self._separate_heads(k, self.num_heads)
        v = self._separate_heads(v, self.num_heads)

        # Attention
        _, _, _, c_per_head = q.shape
        attn = q @ k.permute(0, 1, 3, 2)  # B x N_heads x N_tokens x N_tokens
        attn = attn / math.sqrt(c_per_head)
        attn = torch.softmax(attn, dim=-1)

        # Get output
        out = attn @ v
        out = self._recombine_heads(out)
        out = self.out_proj(out)

        return out

# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119  # noqa
class LayerNorm2d(nn.Module):
    def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
        super().__init__()
        self.weight = nn.Parameter(torch.ones(num_channels))
        self.bias = nn.Parameter(torch.zeros(num_channels))
        self.eps = eps

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        u = x.mean(1, keepdim=True)
        s = (x - u).pow(2).mean(1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.eps)
        x = self.weight[:, None, None] * x + self.bias[:, None, None]
        return x

class MLPBlock(nn.Module):
    def __init__(
        self,
        embedding_dim: int,
        mlp_dim: int,
        act: Type[nn.Module] = nn.GELU,
    ) -> None:
        super().__init__()
        self.lin1 = nn.Linear(embedding_dim, mlp_dim)
        self.lin2 = nn.Linear(mlp_dim, embedding_dim)
        self.act = act()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.lin2(self.act(self.lin1(x)))
    

# sam
class Sam(nn.Module):
    mask_threshold: float = 0.0
    image_format: str = "RGB"

    def __init__(
        self,
        image_encoder,
        prompt_encoder,
        mask_decoder,
        pixel_mean: List[float] = [123.675, 116.28, 103.53],
        pixel_std: List[float] = [58.395, 57.12, 57.375],
    ) -> None:
        """
        SAM predicts object masks from an image and input prompts.

        Arguments:
          image_encoder (ImageEncoderViT): The backbone used to encode the
            image into image embeddings that allow for efficient mask prediction.
          prompt_encoder (PromptEncoder): Encodes various types of input prompts.
          mask_decoder (MaskDecoder): Predicts masks from the image embeddings
            and encoded prompts.
          pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
          pixel_std (list(float)): Std values for normalizing pixels in the input image.
        """
        super().__init__()
        self.image_encoder = image_encoder
        self.prompt_encoder = prompt_encoder
        self.mask_decoder = mask_decoder
        self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
        self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)

    @property
    def device(self) -> Any:
        return self.pixel_mean.device

    @torch.no_grad()
    def forward(
        self,
        batched_input: List[Dict[str, Any]],
        multimask_output: bool,
    ) -> List[Dict[str, torch.Tensor]]:
        """
        Predicts masks end-to-end from provided images and prompts.
        If prompts are not known in advance, using SamPredictor is
        recommended over calling the model directly.

        Arguments:
          batched_input (list(dict)): A list over input images, each a
            dictionary with the following keys. A prompt key can be
            excluded if it is not present.
              'image': The image as a torch tensor in 3xHxW format,
                already transformed for input to the model.
              'original_size': (tuple(int, int)) The original size of
                the image before transformation, as (H, W).
              'point_coords': (torch.Tensor) Batched point prompts for
                this image, with shape BxNx2. Already transformed to the
                input frame of the model.
              'point_labels': (torch.Tensor) Batched labels for point prompts,
                with shape BxN.
              'boxes': (torch.Tensor) Batched box inputs, with shape Bx4.
                Already transformed to the input frame of the model.
              'mask_inputs': (torch.Tensor) Batched mask inputs to the model,
                in the form Bx1xHxW.
          multimask_output (bool): Whether the model should predict multiple
            disambiguating masks, or return a single mask.

        Returns:
          (list(dict)): A list over input images, where each element is
            as dictionary with the following keys.
              'masks': (torch.Tensor) Batched binary mask predictions,
                with shape BxCxHxW, where B is the number of input prompts,
                C is determined by multimask_output, and (H, W) is the
                original size of the image.
              'iou_predictions': (torch.Tensor) The model's predictions
                of mask quality, in shape BxC.
              'low_res_logits': (torch.Tensor) Low resolution logits with
                shape BxCxHxW, where H=W=256. Can be passed as mask input
                to subsequent iterations of prediction.
        """
        input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0)
        image_embeddings = self.image_encoder(input_images)

        outputs = []
        for image_record, curr_embedding in zip(batched_input, image_embeddings):
            if "point_coords" in image_record:
                points = (image_record["point_coords"], image_record["point_labels"])
            else:
                points = None
            sparse_embeddings, dense_embeddings = self.prompt_encoder(
                points=points,
                boxes=image_record.get("boxes", None),
                masks=image_record.get("mask_inputs", None),
            )
            low_res_masks, iou_predictions = self.mask_decoder(
                image_embeddings=curr_embedding.unsqueeze(0),
                image_pe=self.prompt_encoder.get_dense_pe(),
                sparse_prompt_embeddings=sparse_embeddings,
                dense_prompt_embeddings=dense_embeddings,
                multimask_output=multimask_output,
            )
            masks = self.postprocess_masks(
                low_res_masks,
                input_size=image_record["image"].shape[-2:],
                original_size=image_record["original_size"],
            )
            masks = masks > self.mask_threshold
            outputs.append(
                {
                    "masks": masks,
                    "iou_predictions": iou_predictions,
                    "low_res_logits": low_res_masks,
                }
            )
        return outputs

    def postprocess_masks(
        self,
        masks: torch.Tensor,
        input_size: Tuple[int, ...],
        original_size: Tuple[int, ...],
    ) -> torch.Tensor:
        """
        Remove padding and upscale masks to the original image size.

        Arguments:
          masks (torch.Tensor): Batched masks from the mask_decoder,
            in BxCxHxW format.
          input_size (tuple(int, int)): The size of the image input to the
            model, in (H, W) format. Used to remove padding.
          original_size (tuple(int, int)): The original size of the image
            before resizing for input to the model, in (H, W) format.

        Returns:
          (torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
            is given by original_size.
        """
        masks = F.interpolate(
            masks,
            (self.image_encoder.img_size, self.image_encoder.img_size),
            mode="bilinear",
            align_corners=False,
        )
        masks = masks[..., : input_size[0], : input_size[1]]
        masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
        return masks

    def preprocess(self, x: torch.Tensor) -> torch.Tensor:
        """Normalize pixel values and pad to a square input."""
        # Normalize colors
        # TODO
        x = (x - self.pixel_mean) / self.pixel_std

        # Pad
        h, w = x.shape[-2:]
        padh = self.image_encoder.img_size - h
        padw = self.image_encoder.img_size - w
        x = F.pad(x, (0, padw, 0, padh))
        return x