|
|
|
--- |
|
license: creativeml-openrail-m |
|
base_model: zachary-shah/unconditional_mri_full_512_v2_base |
|
datasets: |
|
- 'OASIS-3' |
|
tags: |
|
- stable-diffusion |
|
- stable-diffusion-diffusers |
|
- diffusers |
|
inference: true |
|
--- |
|
|
|
# Unconditioned stable diffusion finetuning - zachary-shah/unconditional_gslider_256_b1000 |
|
|
|
This pipeline was finetuned from **zachary-shah/unconditional_mri_full_512_v2_base** |
|
on the **OASIS-3** dataset for brain image generation. |
|
Below are some example images generated with the finetuned pipeline: |
|
|
|
![val_imgs_grid](./val_imgs_grid.png) |
|
|
|
|
|
## Pipeline usage |
|
|
|
You can use the pipeline like so: |
|
|
|
```python |
|
from diffusers import StableDiffusionUnconditionalPipeline |
|
import torch |
|
|
|
pipeline = StableDiffusionUnconditionalPipeline.from_pretrained("zachary-shah/unconditional_gslider_256_b1000", torch_dtype=torch.float32) |
|
image = pipeline(1).images[0] |
|
image.save("brain_image.png") |
|
``` |
|
|
|
## Training info |
|
For training info, refer the model card for the parent conditional model: zachary-shah/unconditional_mri_full_512_v2_base. |