|
--- |
|
language: |
|
- tr |
|
thumbnail: https://avatars3.githubusercontent.com/u/32437151?s=460&u=4ec59abc8d21d5feea3dab323d23a5860e6996a4&v=4 |
|
tags: |
|
- text-classification |
|
- emotion |
|
- pytorch |
|
datasets: |
|
- emotion (Translated to Turkish) |
|
metrics: |
|
- Accuracy, F1 Score |
|
--- |
|
# distilbert-base-turkish-cased-emotion |
|
|
|
## Model description: |
|
[Distilbert-base-turkish-cased](https://huggingface.co/dbmdz/distilbert-base-turkish-cased) finetuned on the emotion dataset using HuggingFace Trainer with below Hyperparameters |
|
``` |
|
learning rate 2e-5, |
|
batch size 64, |
|
num_train_epochs=8, |
|
``` |
|
|
|
## Model Performance Comparision on Emotion Dataset from Twitter: |
|
|
|
| Model | Accuracy | F1 Score | Test Sample per Second | |
|
| --- | --- | --- | --- | |
|
| [Distilbert-base-turkish-cased-emotion](https://huggingface.co/dbmdz/distilbert-base-turkish-cased) | 83.25 | 83.17 | 232.197 | |
|
|
|
## How to Use the model: |
|
```python |
|
from transformers import pipeline |
|
classifier = pipeline("text-classification",model='zafercavdar/distilbert-base-turkish-cased-emotion', return_all_scores=True) |
|
prediction = classifier("Bu kütüphaneyi seviyorum, en iyi yanı kolay kullanımı.", ) |
|
print(prediction) |
|
|
|
""" |
|
Output: |
|
[ |
|
[ |
|
{'label': 'sadness', 'score': 0.0026786490343511105}, |
|
{'label': 'joy', 'score': 0.6600754261016846}, |
|
{'label': 'love', 'score': 0.3203163146972656}, |
|
{'label': 'anger', 'score': 0.004358913749456406}, |
|
{'label': 'fear', 'score': 0.002354539930820465}, |
|
{'label': 'surprise', 'score': 0.010216088965535164} |
|
] |
|
] |
|
|
|
""" |
|
``` |
|
|
|
## Dataset: |
|
[Twitter-Sentiment-Analysis](https://huggingface.co/nlp/viewer/?dataset=emotion). |
|
|
|
## Eval results |
|
```json |
|
{ |
|
'eval_accuracy': 0.8325, |
|
'eval_f1': 0.8317301441160213, |
|
'eval_loss': 0.5021793842315674, |
|
'eval_runtime': 8.6167, |
|
'eval_samples_per_second': 232.108, |
|
'eval_steps_per_second': 3.714 |
|
} |
|
``` |