Commit
·
507feb7
1
Parent(s):
c8e7585
Delete tokenization_glm.py
Browse files- tokenization_glm.py +0 -362
tokenization_glm.py
DELETED
@@ -1,362 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from typing import Optional, Tuple, List, Union
|
3 |
-
from shutil import copyfile
|
4 |
-
import torch
|
5 |
-
|
6 |
-
from transformers import PreTrainedTokenizer, RobertaTokenizer, GPT2Tokenizer, BertTokenizer
|
7 |
-
from transformers.utils import logging
|
8 |
-
from transformers.tokenization_utils_base import BatchEncoding
|
9 |
-
from transformers.models.auto.tokenization_auto import get_tokenizer_config
|
10 |
-
from transformers.utils.generic import _is_torch_device
|
11 |
-
import sentencepiece as spm
|
12 |
-
|
13 |
-
logger = logging.get_logger(__name__)
|
14 |
-
|
15 |
-
|
16 |
-
class GLMBatchEncoding(BatchEncoding):
|
17 |
-
def to(self, device: Union[str, "torch.device"]) -> "BatchEncoding":
|
18 |
-
"""
|
19 |
-
Send all values to device by calling `v.to(device)` (PyTorch only).
|
20 |
-
|
21 |
-
Args:
|
22 |
-
device (`str` or `torch.device`): The device to put the tensors on.
|
23 |
-
|
24 |
-
Returns:
|
25 |
-
[`BatchEncoding`]: The same instance after modification.
|
26 |
-
"""
|
27 |
-
|
28 |
-
# This check catches things like APEX blindly calling "to" on all inputs to a module
|
29 |
-
# Otherwise it passes the casts down and casts the LongTensor containing the token idxs
|
30 |
-
# into a HalfTensor
|
31 |
-
if isinstance(device, str) or _is_torch_device(device) or isinstance(device, int):
|
32 |
-
self.data = {k: v.to(device=device) if torch.is_tensor(v) else v for k, v in self.data.items()}
|
33 |
-
else:
|
34 |
-
logger.warning(f"Attempting to cast a BatchEncoding to type {str(device)}. This is not supported.")
|
35 |
-
return self
|
36 |
-
|
37 |
-
|
38 |
-
class GLMTokenizerMixin:
|
39 |
-
@property
|
40 |
-
def sop_token(self) -> Optional[str]:
|
41 |
-
return "<|startofpiece|>"
|
42 |
-
|
43 |
-
@property
|
44 |
-
def sop_token_id(self) -> Optional[int]:
|
45 |
-
"""
|
46 |
-
`Optional[int]`: Id of the start token in the vocabulary, used when training a model with autoregressive blank filling.
|
47 |
-
"""
|
48 |
-
return self.convert_tokens_to_ids(self.sop_token)
|
49 |
-
|
50 |
-
@property
|
51 |
-
def eop_token(self) -> Optional[str]:
|
52 |
-
return "<|endofpiece|>"
|
53 |
-
|
54 |
-
@property
|
55 |
-
def eop_token_id(self) -> Optional[int]:
|
56 |
-
"""
|
57 |
-
`Optional[int]`: Id of the end token in the vocabulary, used when training a model with autoregressive blank filling.
|
58 |
-
"""
|
59 |
-
return self.convert_tokens_to_ids(self.eop_token)
|
60 |
-
|
61 |
-
@property
|
62 |
-
def gmask_token_id(self) -> int:
|
63 |
-
return self.convert_tokens_to_ids("[gMASK]")
|
64 |
-
|
65 |
-
@property
|
66 |
-
def smask_token_id(self) -> int:
|
67 |
-
return self.convert_tokens_to_ids("[sMASK]")
|
68 |
-
|
69 |
-
@property
|
70 |
-
def mask_token_ids(self):
|
71 |
-
return [self.mask_token_id, self.smask_token_id, self.gmask_token_id]
|
72 |
-
|
73 |
-
def _build_input_for_multiple_choice(self, context, choices):
|
74 |
-
context_id = context["input_ids"]
|
75 |
-
if torch.is_tensor(context_id):
|
76 |
-
context_id = context_id.tolist()
|
77 |
-
|
78 |
-
division = len(context_id)
|
79 |
-
mask_position = context_id.index(self.mask_token_id)
|
80 |
-
|
81 |
-
token = torch.tensor(context_id, dtype=torch.long)
|
82 |
-
attention_mask = [context["attention_mask"].expand(division, -1)]
|
83 |
-
position_id = torch.arange(division, dtype=torch.long)
|
84 |
-
block_position_id = torch.zeros(division, dtype=torch.long)
|
85 |
-
|
86 |
-
choice_ids, choice_indices = [], []
|
87 |
-
|
88 |
-
for choice_str in choices:
|
89 |
-
choice = torch.tensor(self(choice_str, add_special_tokens=False, padding=False)['input_ids'],
|
90 |
-
dtype=torch.long)
|
91 |
-
choice_ids.append(choice)
|
92 |
-
choice_indices.append(torch.arange(len(token), len(token) + len(choice), dtype=torch.long))
|
93 |
-
attention_mask.append(torch.tril(torch.ones((len(choice), len(choice)), dtype=torch.long)))
|
94 |
-
|
95 |
-
token = torch.cat((token, torch.tensor([self.sop_token_id], dtype=torch.long), choice[:-1]))
|
96 |
-
position_id = torch.cat((position_id, torch.tensor([mask_position] * len(choice), dtype=torch.long)))
|
97 |
-
block_position_id = torch.cat((block_position_id, torch.arange(1, 1 + len(choice), dtype=torch.long)))
|
98 |
-
|
99 |
-
attention_mask = torch.block_diag(*attention_mask)
|
100 |
-
attention_mask[division:, :division] = context["attention_mask"].unsqueeze(0)
|
101 |
-
|
102 |
-
return {
|
103 |
-
"input_ids": token,
|
104 |
-
"position_ids": torch.stack((position_id, block_position_id)),
|
105 |
-
"attention_mask": attention_mask,
|
106 |
-
"choice_ids": choice_ids,
|
107 |
-
"choice_indices": choice_indices
|
108 |
-
}
|
109 |
-
|
110 |
-
def _pad_batch(self, tokens, position_ids, attention_mask, max_seq_length):
|
111 |
-
pad_length = max_seq_length - len(tokens)
|
112 |
-
attention_mask = torch.nn.functional.pad(
|
113 |
-
attention_mask,
|
114 |
-
(0, pad_length, 0, pad_length),
|
115 |
-
mode="constant",
|
116 |
-
value=0,
|
117 |
-
)
|
118 |
-
tokens = torch.cat((tokens, torch.zeros(pad_length, dtype=torch.long)))
|
119 |
-
position_ids = torch.cat((position_ids, position_ids[..., -1:].expand(-1, pad_length)), dim=-1)
|
120 |
-
return tokens, position_ids, attention_mask
|
121 |
-
|
122 |
-
def _collate(self, samples):
|
123 |
-
TILE = 1
|
124 |
-
length_to_pad = (max(map(lambda spl: len(spl["input_ids"]), samples)) + TILE - 1) // TILE * TILE
|
125 |
-
|
126 |
-
token_batch, position_id_batch, attention_mask_batch = [], [], []
|
127 |
-
choices_batch, choice_target_ids_batch = [], []
|
128 |
-
|
129 |
-
for sample in samples:
|
130 |
-
token, position_id, attention_mask = self._pad_batch(
|
131 |
-
sample["input_ids"], sample["position_ids"], sample["attention_mask"], length_to_pad
|
132 |
-
)
|
133 |
-
token_batch.append(token)
|
134 |
-
position_id_batch.append(position_id)
|
135 |
-
attention_mask_batch.append(attention_mask)
|
136 |
-
choices_batch.append(sample["choice_ids"])
|
137 |
-
choice_target_ids_batch.append(sample["choice_indices"])
|
138 |
-
return {
|
139 |
-
"input_ids": torch.stack(token_batch),
|
140 |
-
"position_ids": torch.stack(position_id_batch),
|
141 |
-
"attention_mask": torch.stack(attention_mask_batch).unsqueeze(1),
|
142 |
-
"choice_ids": choices_batch,
|
143 |
-
"choice_indices": choice_target_ids_batch,
|
144 |
-
}
|
145 |
-
|
146 |
-
def build_inputs_for_multiple_choice(self, model_input: BatchEncoding, choices, max_length=None):
|
147 |
-
samples = [{key: value[i] for key, value in model_input.items()} for i in range(len(model_input["input_ids"]))]
|
148 |
-
samples = [self._build_input_for_multiple_choice(sample, choice) for sample, choice in
|
149 |
-
zip(samples, choices)]
|
150 |
-
inputs = self._collate(samples)
|
151 |
-
return GLMBatchEncoding(inputs)
|
152 |
-
|
153 |
-
def build_inputs_for_generation(self, model_input: BatchEncoding, max_gen_length=512, targets=None, padding=False):
|
154 |
-
mask_ids = self.mask_token_ids
|
155 |
-
input_ids = model_input.input_ids
|
156 |
-
batch_size, seq_length = input_ids.shape[:2]
|
157 |
-
position_id, block_position_id = list(range(seq_length)), [0 for _ in range(seq_length)]
|
158 |
-
position_ids, block_position_ids = [], []
|
159 |
-
labels = None
|
160 |
-
if targets is not None:
|
161 |
-
is_batched = isinstance(targets, (list, tuple))
|
162 |
-
targets = self(targets, add_special_tokens=False, padding=False).input_ids
|
163 |
-
if not is_batched:
|
164 |
-
targets = [targets]
|
165 |
-
assert len(targets) == len(input_ids)
|
166 |
-
targets = [(target + [self.eop_token_id])[:max_gen_length] for target in targets]
|
167 |
-
if not padding:
|
168 |
-
max_gen_length = max(map(len, targets))
|
169 |
-
targets = [[self.sop_token_id] + target for target in targets]
|
170 |
-
labels = [target[1:] for target in targets]
|
171 |
-
targets = [target + [self.pad_token_id] * (max_gen_length + 1 - len(target)) for target in targets]
|
172 |
-
labels = [label + [-100] * (max_gen_length - len(label)) for label in labels]
|
173 |
-
targets = torch.tensor(targets, dtype=input_ids.dtype, device=input_ids.device)
|
174 |
-
labels = torch.tensor(labels, dtype=input_ids.dtype, device=input_ids.device)
|
175 |
-
labels = torch.cat((input_ids.new_full((batch_size, seq_length), -100), labels), dim=1)
|
176 |
-
for i in range(batch_size):
|
177 |
-
mask_positions = []
|
178 |
-
for mask_id in mask_ids:
|
179 |
-
mask_positions += (input_ids[i] == mask_id).nonzero(as_tuple=True)[0].tolist()
|
180 |
-
if not mask_positions:
|
181 |
-
raise ValueError("Cannot find mask token in the input")
|
182 |
-
mask_positions.sort()
|
183 |
-
mask_pos = mask_positions[0]
|
184 |
-
position_ids.append(position_id + [mask_pos] * max_gen_length)
|
185 |
-
block_position_ids.append(block_position_id + list(range(1, max_gen_length + 1)))
|
186 |
-
position_ids = torch.tensor(position_ids, dtype=input_ids.dtype, device=input_ids.device)
|
187 |
-
block_position_ids = torch.tensor(block_position_ids, dtype=input_ids.dtype, device=input_ids.device)
|
188 |
-
position_ids = torch.stack((position_ids, block_position_ids), dim=1)
|
189 |
-
attention_mask = model_input.attention_mask
|
190 |
-
attention_mask = attention_mask.unsqueeze(1).expand(-1, seq_length + max_gen_length, -1)
|
191 |
-
generation_attention_mask = torch.cat([attention_mask.new_zeros((seq_length, max_gen_length)),
|
192 |
-
torch.tril(attention_mask.new_ones((max_gen_length, max_gen_length)))],
|
193 |
-
dim=0).unsqueeze(0).expand(batch_size, -1, -1)
|
194 |
-
attention_mask = torch.cat((attention_mask, generation_attention_mask), dim=2)
|
195 |
-
attention_mask = attention_mask.unsqueeze(1)
|
196 |
-
if targets is None:
|
197 |
-
input_ids = torch.cat((input_ids, input_ids.new_full((batch_size, 1), self.sop_token_id)), dim=-1)
|
198 |
-
else:
|
199 |
-
input_ids = torch.cat((input_ids, targets[:, :-1]), dim=1)
|
200 |
-
batch = {"input_ids": input_ids, "position_ids": position_ids}
|
201 |
-
if labels is None:
|
202 |
-
batch["generation_attention_mask"] = attention_mask
|
203 |
-
else:
|
204 |
-
batch["attention_mask"] = attention_mask
|
205 |
-
batch["labels"] = labels
|
206 |
-
return BatchEncoding(batch)
|
207 |
-
|
208 |
-
|
209 |
-
class GLMRobertaTokenizer(RobertaTokenizer, GLMTokenizerMixin):
|
210 |
-
model_input_names = ["input_ids", "position_ids", "attention_mask"]
|
211 |
-
truncation_side: str = "left"
|
212 |
-
|
213 |
-
@property
|
214 |
-
def gmask_token_id(self) -> int:
|
215 |
-
raise NotImplementedError("The model doesn't support gMASK")
|
216 |
-
|
217 |
-
@property
|
218 |
-
def smask_token_id(self) -> int:
|
219 |
-
raise NotImplementedError("The model doesn't support sMASK")
|
220 |
-
|
221 |
-
@property
|
222 |
-
def mask_token_ids(self):
|
223 |
-
return [self.mask_token_id]
|
224 |
-
|
225 |
-
|
226 |
-
class GLMChineseTokenizer(PreTrainedTokenizer, GLMTokenizerMixin):
|
227 |
-
vocab_files_names = {"vocab_file": "cog-pretrain.model"}
|
228 |
-
truncation_side: str = "left"
|
229 |
-
|
230 |
-
def __init__(self, vocab_file, **kwargs):
|
231 |
-
super().__init__(**kwargs)
|
232 |
-
self.vocab_file = vocab_file
|
233 |
-
self.sp_model = spm.SentencePieceProcessor()
|
234 |
-
self.sp_model.Load(vocab_file)
|
235 |
-
|
236 |
-
@property
|
237 |
-
def vocab_size(self):
|
238 |
-
return len(self.sp_model)
|
239 |
-
|
240 |
-
def get_vocab(self):
|
241 |
-
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
242 |
-
vocab.update(self.added_tokens_encoder)
|
243 |
-
return vocab
|
244 |
-
|
245 |
-
def _tokenize(self, text, **kwargs):
|
246 |
-
return self.sp_model.encode(text, out_type=str)
|
247 |
-
|
248 |
-
def _convert_token_to_id(self, token):
|
249 |
-
"""Converts a token (str) in an id using the vocab."""
|
250 |
-
return self.sp_model.PieceToId(token)
|
251 |
-
|
252 |
-
def _convert_id_to_token(self, index):
|
253 |
-
"""Converts an index (integer) in a token (str) using the vocab."""
|
254 |
-
return self.sp_model.IdToPiece(index)
|
255 |
-
|
256 |
-
def convert_tokens_to_string(self, tokens):
|
257 |
-
return self.sp_model.decode(tokens)
|
258 |
-
|
259 |
-
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
260 |
-
if not os.path.isdir(save_directory):
|
261 |
-
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
262 |
-
return
|
263 |
-
out_vocab_file = os.path.join(
|
264 |
-
save_directory, (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"]
|
265 |
-
)
|
266 |
-
|
267 |
-
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
268 |
-
copyfile(self.vocab_file, out_vocab_file)
|
269 |
-
elif not os.path.isfile(self.vocab_file):
|
270 |
-
with open(out_vocab_file, "wb") as fi:
|
271 |
-
content_spiece_model = self.sp_model.serialized_model_proto()
|
272 |
-
fi.write(content_spiece_model)
|
273 |
-
|
274 |
-
return (out_vocab_file,)
|
275 |
-
|
276 |
-
def build_inputs_with_special_tokens(
|
277 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
278 |
-
) -> List[int]:
|
279 |
-
"""
|
280 |
-
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
281 |
-
adding special tokens. A BERT sequence has the following format:
|
282 |
-
|
283 |
-
- single sequence: ``[CLS] X [SEP]``
|
284 |
-
- pair of sequences: ``[CLS] A [SEP] B [SEP]``
|
285 |
-
|
286 |
-
Args:
|
287 |
-
token_ids_0 (:obj:`List[int]`):
|
288 |
-
List of IDs to which the special tokens will be added.
|
289 |
-
token_ids_1 (:obj:`List[int]`, `optional`):
|
290 |
-
Optional second list of IDs for sequence pairs.
|
291 |
-
|
292 |
-
Returns:
|
293 |
-
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
|
294 |
-
"""
|
295 |
-
assert token_ids_1 is None
|
296 |
-
cls = [self.cls_token_id]
|
297 |
-
eos = [self.eos_token_id]
|
298 |
-
return cls + token_ids_0 + eos
|
299 |
-
|
300 |
-
|
301 |
-
class GLMGPT2Tokenizer(GPT2Tokenizer, GLMTokenizerMixin):
|
302 |
-
model_input_names = ["input_ids", "position_ids", "attention_mask"]
|
303 |
-
truncation_side: str = "left"
|
304 |
-
|
305 |
-
def build_inputs_with_special_tokens(
|
306 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
307 |
-
) -> List[int]:
|
308 |
-
"""
|
309 |
-
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
310 |
-
adding special tokens. A BERT sequence has the following format:
|
311 |
-
|
312 |
-
- single sequence: ``[CLS] X [SEP]``
|
313 |
-
- pair of sequences: ``[CLS] A [SEP] B [SEP]``
|
314 |
-
|
315 |
-
Args:
|
316 |
-
token_ids_0 (:obj:`List[int]`):
|
317 |
-
List of IDs to which the special tokens will be added.
|
318 |
-
token_ids_1 (:obj:`List[int]`, `optional`):
|
319 |
-
Optional second list of IDs for sequence pairs.
|
320 |
-
|
321 |
-
Returns:
|
322 |
-
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
|
323 |
-
"""
|
324 |
-
assert token_ids_1 is None
|
325 |
-
cls = [self.cls_token_id]
|
326 |
-
eos = [self.eos_token_id]
|
327 |
-
return cls + token_ids_0 + eos
|
328 |
-
|
329 |
-
|
330 |
-
class GLMBertTokenizer(BertTokenizer, GLMTokenizerMixin):
|
331 |
-
model_input_names = ["input_ids", "position_ids", "attention_mask"]
|
332 |
-
truncation_side: str = "left"
|
333 |
-
|
334 |
-
@property
|
335 |
-
def gmask_token_id(self) -> int:
|
336 |
-
raise NotImplementedError("The model doesn't support gMASK")
|
337 |
-
|
338 |
-
@property
|
339 |
-
def smask_token_id(self) -> int:
|
340 |
-
raise NotImplementedError("The model doesn't support sMASK")
|
341 |
-
|
342 |
-
@property
|
343 |
-
def mask_token_ids(self):
|
344 |
-
return [self.mask_token_id]
|
345 |
-
|
346 |
-
|
347 |
-
class GLMTokenizer:
|
348 |
-
@classmethod
|
349 |
-
def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
|
350 |
-
tokenizer_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs)
|
351 |
-
config_tokenizer_class = tokenizer_config.get("tokenizer_class")
|
352 |
-
if config_tokenizer_class == "GLMRobertaTokenizer":
|
353 |
-
tokenizer_class = GLMRobertaTokenizer
|
354 |
-
elif config_tokenizer_class == "GLMChineseTokenizer":
|
355 |
-
tokenizer_class = GLMChineseTokenizer
|
356 |
-
elif config_tokenizer_class == "GLMGPT2Tokenizer":
|
357 |
-
tokenizer_class = GLMGPT2Tokenizer
|
358 |
-
elif config_tokenizer_class == "GLMBertTokenizer":
|
359 |
-
tokenizer_class = GLMBertTokenizer
|
360 |
-
else:
|
361 |
-
raise NotImplementedError("Not implemented tokenizer type:", config_tokenizer_class)
|
362 |
-
return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|