Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases

240803_01-wav2vec2-ASR-Global-All-Clients

This model is a fine-tuned version of zainulhakim/240626-wav2vec2-ASR_Global on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2829
  • Wer: 0.1449

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 5
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 1.5625 100 0.2964 0.1989
No log 3.125 200 0.3052 0.2216
No log 4.6875 300 0.3365 0.2614
No log 6.25 400 0.3643 0.2670
0.1191 7.8125 500 0.3596 0.2841
0.1191 9.375 600 0.4020 0.2358
0.1191 10.9375 700 0.3445 0.2727
0.1191 12.5 800 0.3989 0.3239
0.1191 14.0625 900 0.3855 0.2415
0.1639 15.625 1000 0.3188 0.2131
0.1639 17.1875 1100 0.2902 0.1648
0.1639 18.75 1200 0.2829 0.1449

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
1
Safetensors
Model size
94.4M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for zainulhakim/240806-wav2vec2-ASR-Global-All-Clients

Finetuned
(3)
this model