File size: 11,010 Bytes
45a5b7e 8e64449 45a5b7e 8e64449 45a5b7e 8e64449 a11be67 8e64449 64c7c3c 8e64449 64c7c3c f3133e8 64c7c3c f3133e8 64c7c3c 8e64449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
---
language:
- en
library_name: transformers
tags:
- gpt
- llm
- large language model
- h2o-llmstudio
inference: false
thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
---
# Model Card
## Summary
This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
- Base model: [h2oai/h2o-danube3-500m-chat](https://huggingface.co/h2oai/h2o-danube3-500m-chat)
- Fine-tuning dataset: [zakariarada/oasst](https://huggingface.co/datasets/zakariarada/oasst)
## Training
To train the model using your custom dataset, you can follow the steps below. This example demonstrates how to fine-tune the `h2oai/h2o-danube3-500m-chat` model using the Hugging Face `transformers` library.
### Code Example
```python
import pandas as pd
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
TrainingArguments,
Trainer
)
from datasets import Dataset
# Load Dataset
data_path = "train_full.pq"
df = pd.read_parquet(data_path)
# Prepare Dataset for Training
dataset = Dataset.from_pandas(df)
def preprocess_function(examples):
# Combine 'instruction' and 'parent_id' as input prompt
instruction = examples["instruction"]
parent_id = examples["parent_id"]
input_prompt = f"{parent_id}: {instruction}" if parent_id else instruction
return {
"input_text": input_prompt,
"target_text": examples["output"]
}
# Preprocess Dataset
dataset = dataset.map(preprocess_function, remove_columns=["id", "parent_id", "instruction", "output"])
# Load Tokenizer and Model
model_name = "h2oai/h2o-danube3-500m-chat"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Tokenize Data
def tokenize_function(examples):
return tokenizer(
examples["input_text"],
padding="max_length",
truncation=True,
max_length=512
)
tokenized_dataset = dataset.map(tokenize_function, batched=True)
# Training Arguments
training_args = TrainingArguments(
output_dir="./output/TCLM-beta/", # Directory to save model checkpoints
num_train_epochs=3, # Increase epochs for better fine-tuning results
per_device_train_batch_size=4, # Adjust based on GPU memory, increase if possible
gradient_accumulation_steps=4, # Accumulate gradients to simulate a larger batch size
evaluation_strategy="steps", # Evaluate more frequently for detailed tracking
eval_steps=500, # Evaluate every 500 steps to track progress without over-evaluating
save_strategy="steps", # Save checkpoints during training
save_steps=500, # Save model every 500 steps
save_total_limit=2, # Limit to the two best models to save disk space
learning_rate=5e-5, # Lower learning rate for fine-tuning
weight_decay=0.01, # Slight weight decay to prevent overfitting
lr_scheduler_type="cosine", # Cosine schedule for smoother learning rate decay
warmup_ratio=0.06, # Warmup to stabilize initial training
logging_dir="./logs", # Directory to save training logs
logging_steps=50, # Log progress every 50 steps for better monitoring
fp16=True, # Enable mixed precision for faster training with less memory
load_best_model_at_end=True, # Load the best model at the end based on evaluation metric
metric_for_best_model="eval_loss", # Use evaluation loss to determine the best model
greater_is_better=False, # Lower loss is better
)
# Trainer Setup
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,
tokenizer=tokenizer,
)
# Train Model
trainer.train()
```
## Usage
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` library installed.
```bash
pip install transformers==4.45.0
```
Also make sure you are providing your huggingface token to the pipeline if the model is lying in a private repo.
- Either leave `token=True` in the `pipeline` and login to hugginface_hub by running
```python
import huggingface_hub
huggingface_hub.login(<ACCESS_TOKEN>)
```
- Or directly pass your <ACCESS_TOKEN> to `token` in the `pipeline`
```python
from transformers import pipeline
generate_text = pipeline(
model="zakariarada/TCLM-beta",
torch_dtype="auto",
trust_remote_code=True,
device_map={"": "cuda:0"},
token=True,
)
# generate configuration can be modified to your needs
# generate_text.model.generation_config.min_new_tokens = 2
# generate_text.model.generation_config.max_new_tokens = 256
# generate_text.model.generation_config.do_sample = False
# generate_text.model.generation_config.num_beams = 1
# generate_text.model.generation_config.temperature = float(0.0)
# generate_text.model.generation_config.repetition_penalty = float(1.0)
messages = [
{"role": "user", "content": "Hi, how are you?"},
{"role": "assistant", "content": "I'm doing great, how about you?"},
{"role": "user", "content": "Why is drinking water so healthy?"},
]
res = generate_text(
messages,
renormalize_logits=True
)
print(res[0]["generated_text"][-1]['content'])
```
You can print a sample prompt after applying chat template to see how it is feed to the tokenizer:
```python
print(generate_text.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
))
```
You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "zakariarada/TCLM-beta" # either local folder or Hugging Face model name
# Important: The prompt needs to be in the same format the model was trained with.
# You can find an example prompt in the experiment logs.
messages = [
{"role": "user", "content": "Hi, how are you?"},
{"role": "assistant", "content": "I'm doing great, how about you?"},
{"role": "user", "content": "Why is drinking water so healthy?"},
]
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map={"": "cuda:0"},
trust_remote_code=True,
)
model.cuda().eval()
# generate configuration can be modified to your needs
# model.generation_config.min_new_tokens = 2
# model.generation_config.max_new_tokens = 256
# model.generation_config.do_sample = False
# model.generation_config.num_beams = 1
# model.generation_config.temperature = float(0.0)
# model.generation_config.repetition_penalty = float(1.0)
inputs = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
return_dict=True,
).to("cuda")
tokens = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
renormalize_logits=True
)[0]
tokens = tokens[inputs["input_ids"].shape[1]:]
answer = tokenizer.decode(tokens, skip_special_tokens=True)
print(answer)
```
## Quantization and sharding
You can load the models using quantization by specifying ```load_in_8bit=True``` or ```load_in_4bit=True```. Also, sharding on multiple GPUs is possible by setting ```device_map=auto```.
## Model Architecture
```
LlamaForCausalLM(
(model): LlamaModel(
(embed_tokens): Embedding(32000, 1536, padding_idx=0)
(layers): ModuleList(
(0-15): 16 x LlamaDecoderLayer(
(self_attn): LlamaSdpaAttention(
(q_proj): Linear(in_features=1536, out_features=1536, bias=False)
(k_proj): Linear(in_features=1536, out_features=768, bias=False)
(v_proj): Linear(in_features=1536, out_features=768, bias=False)
(o_proj): Linear(in_features=1536, out_features=1536, bias=False)
(rotary_emb): LlamaRotaryEmbedding()
)
(mlp): LlamaMLP(
(gate_proj): Linear(in_features=1536, out_features=4096, bias=False)
(up_proj): Linear(in_features=1536, out_features=4096, bias=False)
(down_proj): Linear(in_features=4096, out_features=1536, bias=False)
(act_fn): SiLU()
)
(input_layernorm): LlamaRMSNorm((1536,), eps=1e-05)
(post_attention_layernorm): LlamaRMSNorm((1536,), eps=1e-05)
)
)
(norm): LlamaRMSNorm((1536,), eps=1e-05)
(rotary_emb): LlamaRotaryEmbedding()
)
(lm_head): Linear(in_features=1536, out_features=32000, bias=False)
)
```
## Model Configuration
This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.
## Disclaimer
Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
- Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints.
- Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion.
- Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model.
- Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities.
- Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues.
- Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes.
By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it. |