zbigi's picture
End of training
bbd8f1a verified
---
base_model: facebook/bart-base
library_name: peft
license: apache-2.0
metrics:
- rouge
tags:
- generated_from_trainer
model-index:
- name: bart-base-summarization-medical_on_cnn-43
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-summarization-medical_on_cnn-43
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3867
- Rouge1: 0.2505
- Rouge2: 0.0917
- Rougel: 0.1982
- Rougelsum: 0.2221
- Gen Len: 18.509
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 1
- seed: 43
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 2.7087 | 1.0 | 1250 | 3.3802 | 0.2509 | 0.0892 | 0.1958 | 0.221 | 19.092 |
| 2.615 | 2.0 | 2500 | 3.3801 | 0.249 | 0.0914 | 0.1958 | 0.22 | 18.594 |
| 2.5711 | 3.0 | 3750 | 3.3867 | 0.2514 | 0.0917 | 0.1969 | 0.2214 | 18.643 |
| 2.5534 | 4.0 | 5000 | 3.3886 | 0.252 | 0.0932 | 0.198 | 0.2223 | 18.467 |
| 2.5482 | 5.0 | 6250 | 3.3859 | 0.2508 | 0.0908 | 0.1972 | 0.2217 | 18.501 |
| 2.5367 | 6.0 | 7500 | 3.3867 | 0.2505 | 0.0917 | 0.1982 | 0.2221 | 18.509 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1