bart-large-summarization-medical-46

This model is a fine-tuned version of facebook/bart-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8378
  • Rouge1: 0.4404
  • Rouge2: 0.2412
  • Rougel: 0.3768
  • Rougelsum: 0.3769
  • Gen Len: 18.977

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 1
  • seed: 46
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.2273 1.0 1250 1.9018 0.4342 0.2347 0.3676 0.3677 19.319
2.1445 2.0 2500 1.8668 0.4394 0.2388 0.3744 0.3743 18.977
2.0968 3.0 3750 1.8556 0.4406 0.2411 0.3767 0.3769 18.689
2.0883 4.0 5000 1.8502 0.4398 0.2391 0.3758 0.376 18.757
2.0638 5.0 6250 1.8393 0.4416 0.2406 0.3779 0.3777 18.88
2.0453 6.0 7500 1.8378 0.4404 0.2412 0.3768 0.3769 18.977

Framework versions

  • PEFT 0.11.1
  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for zbigi/bart-large-summarization-medical-46

Adapter
(19)
this model