system's picture
system HF staff
Commit From AutoTrain
8da6038
|
raw
history blame
1.46 kB
metadata
tags: autotrain
language: ar
widget:
  - text: I love AutoTrain 🤗
datasets:
  - zenkri/autotrain-data-Arabic_Poetry_by_Subject-1d8ba412
co2_eq_emissions: 0.06170374019107819

Model Trained Using AutoTrain

  • Problem type: Multi-class Classification
  • Model ID: 920730227
  • CO2 Emissions (in grams): 0.06170374019107819

Validation Metrics

  • Loss: 0.5905918478965759
  • Accuracy: 0.8687837028160575
  • Macro F1: 0.7777187122151491
  • Micro F1: 0.8687837028160575
  • Weighted F1: 0.8673230166815299
  • Macro Precision: 0.796117563625016
  • Micro Precision: 0.8687837028160575
  • Weighted Precision: 0.8692944353097692
  • Macro Recall: 0.7732013751753718
  • Micro Recall: 0.8687837028160575
  • Weighted Recall: 0.8687837028160575

Usage

You can use cURL to access this model:

$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/zenkri/autotrain-Arabic_Poetry_by_Subject-920730227

Or Python API:

from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("zenkri/autotrain-Arabic_Poetry_by_Subject-920730227", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("zenkri/autotrain-Arabic_Poetry_by_Subject-920730227", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)