|
--- |
|
base_model: SpanBERT/spanbert-large-cased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: aspect_complaint_spanbert |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# aspect_complaint_spanbert |
|
|
|
This model is a fine-tuned version of [SpanBERT/spanbert-large-cased](https://huggingface.co/SpanBERT/spanbert-large-cased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2032 |
|
- F1: 0.8368 |
|
- Roc Auc: 0.8935 |
|
- Accuracy: 0.5292 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 48 |
|
- eval_batch_size: 48 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| |
|
| No log | 1.0 | 97 | 0.2810 | 0.6988 | 0.7718 | 0.0 | |
|
| No log | 2.0 | 194 | 0.2209 | 0.7688 | 0.8260 | 0.2577 | |
|
| No log | 3.0 | 291 | 0.2017 | 0.7958 | 0.8477 | 0.3565 | |
|
| No log | 4.0 | 388 | 0.1882 | 0.8120 | 0.8678 | 0.4184 | |
|
| No log | 5.0 | 485 | 0.1773 | 0.8272 | 0.8693 | 0.4416 | |
|
| 0.2417 | 6.0 | 582 | 0.1732 | 0.8262 | 0.8792 | 0.4811 | |
|
| 0.2417 | 7.0 | 679 | 0.1719 | 0.8331 | 0.8795 | 0.4759 | |
|
| 0.2417 | 8.0 | 776 | 0.1722 | 0.8341 | 0.8814 | 0.5017 | |
|
| 0.2417 | 9.0 | 873 | 0.1797 | 0.8347 | 0.8818 | 0.4923 | |
|
| 0.2417 | 10.0 | 970 | 0.1856 | 0.8328 | 0.8859 | 0.5112 | |
|
| 0.1287 | 11.0 | 1067 | 0.1866 | 0.8343 | 0.8868 | 0.5275 | |
|
| 0.1287 | 12.0 | 1164 | 0.1868 | 0.8378 | 0.8898 | 0.5258 | |
|
| 0.1287 | 13.0 | 1261 | 0.1923 | 0.8322 | 0.8864 | 0.5120 | |
|
| 0.1287 | 14.0 | 1358 | 0.1916 | 0.8400 | 0.8929 | 0.5387 | |
|
| 0.1287 | 15.0 | 1455 | 0.1975 | 0.8368 | 0.8919 | 0.5421 | |
|
| 0.0781 | 16.0 | 1552 | 0.1974 | 0.8403 | 0.8951 | 0.5369 | |
|
| 0.0781 | 17.0 | 1649 | 0.2022 | 0.8329 | 0.8911 | 0.5241 | |
|
| 0.0781 | 18.0 | 1746 | 0.2012 | 0.8360 | 0.8921 | 0.5284 | |
|
| 0.0781 | 19.0 | 1843 | 0.2027 | 0.8367 | 0.8936 | 0.5335 | |
|
| 0.0781 | 20.0 | 1940 | 0.2032 | 0.8368 | 0.8935 | 0.5292 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.1 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|