Update model.py
Browse files
model.py
CHANGED
@@ -1,212 +1,224 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
import os
|
5 |
-
# 配置类定义
|
6 |
-
class Config:
|
7 |
-
def __init__(self):
|
8 |
-
# 模型架构参数
|
9 |
-
self.hidden_size = 768
|
10 |
-
self.num_attention_heads = 12
|
11 |
-
self.num_hidden_layers = 12
|
12 |
-
self.intermediate_size = 3072
|
13 |
-
self.hidden_dropout_prob = 0.1
|
14 |
-
self.attention_probs_dropout_prob = 0.1
|
15 |
-
|
16 |
-
# 图像相关
|
17 |
-
self.image_size = 224
|
18 |
-
self.image_channels = 3
|
19 |
-
self.patch_size = 16
|
20 |
-
|
21 |
-
# 文本相关
|
22 |
-
self.max_position_embeddings = 512
|
23 |
-
self.vocab_size = 30522
|
24 |
-
self.type_vocab_size = 2
|
25 |
-
|
26 |
-
# 语音相关
|
27 |
-
self.audio_sample_rate = 16000
|
28 |
-
self.audio_frame_size = 1024
|
29 |
-
self.audio_hop_size = 512
|
30 |
-
|
31 |
-
# 任务相关
|
32 |
-
self.enable_vqa = True
|
33 |
-
self.enable_caption = True
|
34 |
-
self.enable_retrieval = True
|
35 |
-
self.enable_asr = True # 语音识别
|
36 |
-
self.enable_realtime_asr = True # 实时语音识别
|
37 |
-
|
38 |
-
# 训练相关
|
39 |
-
self.batch_size = 32
|
40 |
-
self.learning_rate = 1e-4
|
41 |
-
self.weight_decay = 0.01
|
42 |
-
self.warmup_steps = 10000
|
43 |
-
self.max_steps = 100000
|
44 |
-
|
45 |
-
# 模型相关类定义
|
46 |
-
class ImageEncoder(nn.Module):
|
47 |
-
def __init__(self, config):
|
48 |
-
super(ImageEncoder, self).__init__()
|
49 |
-
self.config = config
|
50 |
-
self.encoder_layer = nn.Sequential(
|
51 |
-
nn.Conv2d(3, 64, kernel_size=3),
|
52 |
-
nn.ReLU(),
|
53 |
-
nn.MaxPool2d(2, 2),
|
54 |
-
nn.Flatten(),
|
55 |
-
nn.Linear(64 * 111 * 111, config.hidden_size)
|
56 |
-
)
|
57 |
-
|
58 |
-
def forward(self, image):
|
59 |
-
image_features = self.encoder_layer(image)
|
60 |
-
return image_features
|
61 |
-
|
62 |
-
class TextEncoder(nn.Module):
|
63 |
-
def __init__(self, config):
|
64 |
-
super(TextEncoder, self).__init__()
|
65 |
-
self.config = config
|
66 |
-
self.transformer_layer = nn.TransformerEncoderLayer(
|
67 |
-
d_model=config.hidden_size,
|
68 |
-
nhead=config.num_attention_heads,
|
69 |
-
batch_first=True
|
70 |
-
)
|
71 |
-
self.transformer_encoder = nn.TransformerEncoder(
|
72 |
-
self.transformer_layer,
|
73 |
-
num_layers=config.num_hidden_layers
|
74 |
-
)
|
75 |
-
|
76 |
-
def forward(self, text):
|
77 |
-
text_features = self.transformer_encoder(text).mean(dim=1)
|
78 |
-
return text_features
|
79 |
-
|
80 |
-
class AudioEncoder(nn.Module):
|
81 |
-
def __init__(self, config):
|
82 |
-
super(AudioEncoder, self).__init__()
|
83 |
-
self.config = config
|
84 |
-
self.encoder_layer = nn.Sequential(
|
85 |
-
nn.Linear(config.audio_sample_rate, config.hidden_size),
|
86 |
-
nn.ReLU(),
|
87 |
-
nn.Linear(config.hidden_size, config.hidden_size)
|
88 |
-
)
|
89 |
-
|
90 |
-
def forward(self, audio):
|
91 |
-
audio_features = self.encoder_layer(audio)
|
92 |
-
return audio_features
|
93 |
-
|
94 |
-
class FusionLayer(nn.Module):
|
95 |
-
def __init__(self, config):
|
96 |
-
super(FusionLayer, self).__init__()
|
97 |
-
self.config = config
|
98 |
-
self.fusion_layer = nn.Linear(config.hidden_size * 3, config.hidden_size)
|
99 |
-
|
100 |
-
def forward(self, image_features, text_features, audio_features):
|
101 |
-
fused_features = torch.cat((image_features, text_features, audio_features), dim=1)
|
102 |
-
fused_features = self.fusion_layer(fused_features)
|
103 |
-
return fused_features
|
104 |
-
|
105 |
-
class VQALayer(nn.Module):
|
106 |
-
def __init__(self, config):
|
107 |
-
super(VQALayer, self).__init__()
|
108 |
-
self.config = config
|
109 |
-
self.vqa_layer = nn.Linear(config.hidden_size, config.vocab_size)
|
110 |
-
|
111 |
-
def forward(self, fused_features):
|
112 |
-
vqa_output = self.vqa_layer(fused_features)
|
113 |
-
return vqa_output
|
114 |
-
|
115 |
-
class CaptionLayer(nn.Module):
|
116 |
-
def __init__(self, config):
|
117 |
-
super(CaptionLayer, self).__init__()
|
118 |
-
self.config = config
|
119 |
-
self.caption_layer = nn.Linear(config.hidden_size, config.vocab_size)
|
120 |
-
|
121 |
-
def forward(self, fused_features):
|
122 |
-
caption_output = self.caption_layer(fused_features)
|
123 |
-
return caption_output
|
124 |
-
|
125 |
-
class RetrievalLayer(nn.Module):
|
126 |
-
def __init__(self, config):
|
127 |
-
super(RetrievalLayer, self).__init__()
|
128 |
-
self.config = config
|
129 |
-
self.retrieval_layer = nn.Linear(config.hidden_size, config.vocab_size)
|
130 |
-
|
131 |
-
def forward(self, fused_features):
|
132 |
-
retrieval_output = self.retrieval_layer(fused_features)
|
133 |
-
return retrieval_output
|
134 |
-
|
135 |
-
class ASRLayer(nn.Module):
|
136 |
-
def __init__(self, config):
|
137 |
-
super(ASRLayer, self).__init__()
|
138 |
-
self.config = config
|
139 |
-
self.asr_layer = nn.Linear(config.hidden_size, config.vocab_size)
|
140 |
-
|
141 |
-
def forward(self, fused_features):
|
142 |
-
asr_output = self.asr_layer(fused_features)
|
143 |
-
return asr_output
|
144 |
-
|
145 |
-
class RealtimeASRLayer(nn.Module):
|
146 |
-
def __init__(self, config):
|
147 |
-
super(RealtimeASRLayer, self).__init__()
|
148 |
-
self.config = config
|
149 |
-
self.realtime_asr_layer = nn.Linear(config.hidden_size, config.vocab_size)
|
150 |
-
|
151 |
-
def forward(self, fused_features):
|
152 |
-
realtime_asr_output = self.realtime_asr_layer(fused_features)
|
153 |
-
return realtime_asr_output
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
self.
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
self.
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
print(
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import os
|
5 |
+
# 配置类定义
|
6 |
+
class Config:
|
7 |
+
def __init__(self):
|
8 |
+
# 模型架构参数
|
9 |
+
self.hidden_size = 768
|
10 |
+
self.num_attention_heads = 12
|
11 |
+
self.num_hidden_layers = 12
|
12 |
+
self.intermediate_size = 3072
|
13 |
+
self.hidden_dropout_prob = 0.1
|
14 |
+
self.attention_probs_dropout_prob = 0.1
|
15 |
+
|
16 |
+
# 图像相关
|
17 |
+
self.image_size = 224
|
18 |
+
self.image_channels = 3
|
19 |
+
self.patch_size = 16
|
20 |
+
|
21 |
+
# 文本相关
|
22 |
+
self.max_position_embeddings = 512
|
23 |
+
self.vocab_size = 30522
|
24 |
+
self.type_vocab_size = 2
|
25 |
+
|
26 |
+
# 语音相关
|
27 |
+
self.audio_sample_rate = 16000
|
28 |
+
self.audio_frame_size = 1024
|
29 |
+
self.audio_hop_size = 512
|
30 |
+
|
31 |
+
# 任务相关
|
32 |
+
self.enable_vqa = True
|
33 |
+
self.enable_caption = True
|
34 |
+
self.enable_retrieval = True
|
35 |
+
self.enable_asr = True # 语音识别
|
36 |
+
self.enable_realtime_asr = True # 实时语音识别
|
37 |
+
|
38 |
+
# 训练相关
|
39 |
+
self.batch_size = 32
|
40 |
+
self.learning_rate = 1e-4
|
41 |
+
self.weight_decay = 0.01
|
42 |
+
self.warmup_steps = 10000
|
43 |
+
self.max_steps = 100000
|
44 |
+
|
45 |
+
# 模型相关类定义
|
46 |
+
class ImageEncoder(nn.Module):
|
47 |
+
def __init__(self, config):
|
48 |
+
super(ImageEncoder, self).__init__()
|
49 |
+
self.config = config
|
50 |
+
self.encoder_layer = nn.Sequential(
|
51 |
+
nn.Conv2d(3, 64, kernel_size=3),
|
52 |
+
nn.ReLU(),
|
53 |
+
nn.MaxPool2d(2, 2),
|
54 |
+
nn.Flatten(),
|
55 |
+
nn.Linear(64 * 111 * 111, config.hidden_size)
|
56 |
+
)
|
57 |
+
|
58 |
+
def forward(self, image):
|
59 |
+
image_features = self.encoder_layer(image)
|
60 |
+
return image_features
|
61 |
+
|
62 |
+
class TextEncoder(nn.Module):
|
63 |
+
def __init__(self, config):
|
64 |
+
super(TextEncoder, self).__init__()
|
65 |
+
self.config = config
|
66 |
+
self.transformer_layer = nn.TransformerEncoderLayer(
|
67 |
+
d_model=config.hidden_size,
|
68 |
+
nhead=config.num_attention_heads,
|
69 |
+
batch_first=True
|
70 |
+
)
|
71 |
+
self.transformer_encoder = nn.TransformerEncoder(
|
72 |
+
self.transformer_layer,
|
73 |
+
num_layers=config.num_hidden_layers
|
74 |
+
)
|
75 |
+
|
76 |
+
def forward(self, text):
|
77 |
+
text_features = self.transformer_encoder(text).mean(dim=1)
|
78 |
+
return text_features
|
79 |
+
|
80 |
+
class AudioEncoder(nn.Module):
|
81 |
+
def __init__(self, config):
|
82 |
+
super(AudioEncoder, self).__init__()
|
83 |
+
self.config = config
|
84 |
+
self.encoder_layer = nn.Sequential(
|
85 |
+
nn.Linear(config.audio_sample_rate, config.hidden_size),
|
86 |
+
nn.ReLU(),
|
87 |
+
nn.Linear(config.hidden_size, config.hidden_size)
|
88 |
+
)
|
89 |
+
|
90 |
+
def forward(self, audio):
|
91 |
+
audio_features = self.encoder_layer(audio)
|
92 |
+
return audio_features
|
93 |
+
|
94 |
+
class FusionLayer(nn.Module):
|
95 |
+
def __init__(self, config):
|
96 |
+
super(FusionLayer, self).__init__()
|
97 |
+
self.config = config
|
98 |
+
self.fusion_layer = nn.Linear(config.hidden_size * 3, config.hidden_size)
|
99 |
+
|
100 |
+
def forward(self, image_features, text_features, audio_features):
|
101 |
+
fused_features = torch.cat((image_features, text_features, audio_features), dim=1)
|
102 |
+
fused_features = self.fusion_layer(fused_features)
|
103 |
+
return fused_features
|
104 |
+
|
105 |
+
class VQALayer(nn.Module):
|
106 |
+
def __init__(self, config):
|
107 |
+
super(VQALayer, self).__init__()
|
108 |
+
self.config = config
|
109 |
+
self.vqa_layer = nn.Linear(config.hidden_size, config.vocab_size)
|
110 |
+
|
111 |
+
def forward(self, fused_features):
|
112 |
+
vqa_output = self.vqa_layer(fused_features)
|
113 |
+
return vqa_output
|
114 |
+
|
115 |
+
class CaptionLayer(nn.Module):
|
116 |
+
def __init__(self, config):
|
117 |
+
super(CaptionLayer, self).__init__()
|
118 |
+
self.config = config
|
119 |
+
self.caption_layer = nn.Linear(config.hidden_size, config.vocab_size)
|
120 |
+
|
121 |
+
def forward(self, fused_features):
|
122 |
+
caption_output = self.caption_layer(fused_features)
|
123 |
+
return caption_output
|
124 |
+
|
125 |
+
class RetrievalLayer(nn.Module):
|
126 |
+
def __init__(self, config):
|
127 |
+
super(RetrievalLayer, self).__init__()
|
128 |
+
self.config = config
|
129 |
+
self.retrieval_layer = nn.Linear(config.hidden_size, config.vocab_size)
|
130 |
+
|
131 |
+
def forward(self, fused_features):
|
132 |
+
retrieval_output = self.retrieval_layer(fused_features)
|
133 |
+
return retrieval_output
|
134 |
+
|
135 |
+
class ASRLayer(nn.Module):
|
136 |
+
def __init__(self, config):
|
137 |
+
super(ASRLayer, self).__init__()
|
138 |
+
self.config = config
|
139 |
+
self.asr_layer = nn.Linear(config.hidden_size, config.vocab_size)
|
140 |
+
|
141 |
+
def forward(self, fused_features):
|
142 |
+
asr_output = self.asr_layer(fused_features)
|
143 |
+
return asr_output
|
144 |
+
|
145 |
+
class RealtimeASRLayer(nn.Module):
|
146 |
+
def __init__(self, config):
|
147 |
+
super(RealtimeASRLayer, self).__init__()
|
148 |
+
self.config = config
|
149 |
+
self.realtime_asr_layer = nn.Linear(config.hidden_size, config.vocab_size)
|
150 |
+
|
151 |
+
def forward(self, fused_features):
|
152 |
+
realtime_asr_output = self.realtime_asr_layer(fused_features)
|
153 |
+
return realtime_asr_output
|
154 |
+
|
155 |
+
class TextOutputLayer(nn.Module):
|
156 |
+
def __init__(self, config):
|
157 |
+
super(TextOutputLayer, self).__init__()
|
158 |
+
self.config = config
|
159 |
+
self.text_output_layer = nn.Linear(config.hidden_size, config.vocab_size)
|
160 |
+
|
161 |
+
def forward(self, fused_features):
|
162 |
+
text_output = self.text_output_layer(fused_features)
|
163 |
+
return text_output
|
164 |
+
|
165 |
+
# 主模型定义
|
166 |
+
class AutoModel(nn.Module):
|
167 |
+
def __init__(self, config):
|
168 |
+
super(AutoModel, self).__init__()
|
169 |
+
self.config = config
|
170 |
+
self.image_encoder = ImageEncoder(config)
|
171 |
+
self.text_encoder = TextEncoder(config)
|
172 |
+
self.audio_encoder = AudioEncoder(config)
|
173 |
+
self.fusion_layer = FusionLayer(config)
|
174 |
+
self.vqa_layer = VQALayer(config)
|
175 |
+
self.caption_layer = CaptionLayer(config)
|
176 |
+
self.retrieval_layer = RetrievalLayer(config)
|
177 |
+
self.asr_layer = ASRLayer(config)
|
178 |
+
self.realtime_asr_layer = RealtimeASRLayer(config)
|
179 |
+
self.text_output_layer = TextOutputLayer(config)
|
180 |
+
|
181 |
+
def forward(self, image, text, audio):
|
182 |
+
image_features = self.image_encoder(image)
|
183 |
+
text_features = self.text_encoder(text)
|
184 |
+
audio_features = self.audio_encoder(audio)
|
185 |
+
fused_features = self.fusion_layer(image_features, text_features, audio_features)
|
186 |
+
vqa_output = self.vqa_layer(fused_features)
|
187 |
+
caption_output = self.caption_layer(fused_features)
|
188 |
+
retrieval_output = self.retrieval_layer(fused_features)
|
189 |
+
asr_output = self.asr_layer(fused_features)
|
190 |
+
realtime_asr_output = self.realtime_asr_layer(fused_features)
|
191 |
+
text_output = self.text_output_layer(fused_features)
|
192 |
+
return vqa_output, caption_output, retrieval_output, asr_output, realtime_asr_output, text_output
|
193 |
+
|
194 |
+
# 测试代码
|
195 |
+
config = Config()
|
196 |
+
model = AutoModel(config)
|
197 |
+
image = torch.randn(1, 3, 224, 224)
|
198 |
+
text = torch.randn(1, config.max_position_embeddings, config.hidden_size)
|
199 |
+
audio = torch.randn(1, config.audio_sample_rate)
|
200 |
+
vqa_output, caption_output, retrieval_output, asr_output, realtime_asr_output, text_output = model(image, text, audio)
|
201 |
+
|
202 |
+
# 输出结果
|
203 |
+
print("VQA output shape:", vqa_output.shape)
|
204 |
+
print("Caption output shape:", caption_output.shape)
|
205 |
+
print("Retrieval output shape:", retrieval_output.shape)
|
206 |
+
print("ASR output shape:", asr_output.shape)
|
207 |
+
print("Realtime ASR output shape:", realtime_asr_output.shape)
|
208 |
+
print("Text output shape:", text_output.shape)
|
209 |
+
|
210 |
+
# 打印总参数数量
|
211 |
+
total_params = sum(p.numel() for p in model.parameters())
|
212 |
+
print(f"\n总参数数量: {total_params}")
|
213 |
+
|
214 |
+
|
215 |
+
|
216 |
+
# 保存模型权重
|
217 |
+
save_path = "save.pth"
|
218 |
+
torch.save(model.state_dict(), save_path)
|
219 |
+
print(f"模型权重已保存到: {save_path}")
|
220 |
+
|
221 |
+
|
222 |
+
|
223 |
+
|
224 |
+
|