Model Card for Model ID

Model Details

  • eval_loss : 0.02619364485144615,
  • eval_accuracy: 0.9941391941391942,
  • eval_f1-score: 0.9941391909936754,
  • epoch : 2.0
Classification Report:
              precision    recall  f1-score   support

           0       1.00      0.99      0.99      1365
           1       0.99      1.00      0.99      1365

    accuracy                           0.99      2730
   macro avg       0.99      0.99      0.99      2730
weighted avg       0.99      0.99      0.99      2730

image/png

Clean Function

  • I used it when I tested manual the model and it gave good results when cleaning.
import re
import html
def clean_text(text):
   # Remove HTML tags
   clean = re.compile('<.*?>')
   text = re.sub(clean, '', text)
   # Replace HTML entities with their corresponding characters
   text = html.unescape(text)
   # Remove extra whitespace and normalize spaces
   text = re.sub(r'\s+', ' ', text).strip()
   text = re.sub(r'[^a-zA-Z0-9\s]', '', text)
   return re.sub("\s\s+", " ", text)
Downloads last month
37
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for zeyadusf/roberta-DAIGT-kaggle

Finetuned
(1379)
this model

Dataset used to train zeyadusf/roberta-DAIGT-kaggle

Space using zeyadusf/roberta-DAIGT-kaggle 1

Collection including zeyadusf/roberta-DAIGT-kaggle