|
# Marrying Autoregressive Transformer and Diffusion with Multi-Reference Autoregression <br><sub>Official PyTorch Implementation</sub>
|
|
|
|
[](https://arxiv.org/pdf/2506.09482)
|
|
[](https://huggingface.co/zhendch/Transdiff)
|
|
|
|
|
|
<p align="center">
|
|
<img src="figs/visual.png" width="720">
|
|
</p>
|
|
|
|
This is a PyTorch/GPU implementation of the paper [Marrying Autoregressive Transformer and Diffusion with Multi-Reference Autoregression](https://arxiv.org/pdf/2506.09482):
|
|
|
|
```
|
|
@article{zhen2025marrying,
|
|
title={Marrying Autoregressive Transformer and Diffusion with Multi-Reference Autoregression},
|
|
author={Zhen, Dingcheng and Qiao, Qian and Yu, Tan and Wu, Kangxi and Zhang, Ziwei and Liu, Siyuan and Yin, Shunshun and Tao, Ming},
|
|
journal={arXiv preprint arXiv:2506.09482},
|
|
year={2025}
|
|
}
|
|
```
|
|
|
|
This repo contains:
|
|
|
|
* 🪐 A simple PyTorch implementation of [TransDiff Model](models/transdiff.py) and [TransDiff Model with MRAR](models/transdiff_mrar.py)
|
|
* ⚡️ Pre-trained class-conditional TransDiff models trained on ImageNet 256x256 and 512x512
|
|
* 💥 A self-contained [notebook](demo.ipynb) for running various pre-trained TransDiff models
|
|
* 🛸 An TransDiff [training and evaluation script](main.py) using PyTorch DDP
|
|
|
|
## Preparation
|
|
|
|
### Dataset
|
|
Download [ImageNet](http://image-net.org/download) dataset, and place it in your `IMAGENET_PATH`.
|
|
|
|
### VAE Model
|
|
We adopt the VAE model from [MAR](https://github.com/LTH14/mar) , you can also get it [here](https://huggingface.co/zhendch/Transdiff/resolve/main/vae/checkpoint-last.pth?download=true).
|
|
### Installation
|
|
|
|
Download the code:
|
|
```
|
|
git clone https://github.com/TransDiff/TransDiff
|
|
cd TransDiff
|
|
```
|
|
|
|
A suitable [conda](https://conda.io/) environment named `transdiff` can be created and activated with:
|
|
|
|
```
|
|
conda env create -f environment.yaml
|
|
conda activate transdiff
|
|
```
|
|
|
|
For convenience, our pre-trained TransDiff models can be downloaded directly here as well:
|
|
|
|
| TransDiff Model | FID-50K | Inception Score | #params |
|
|
|--------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|---------|
|
|
| [TransDiff-B](https://huggingface.co/zhendch/Transdiff/resolve/main/transdiff_b/checkpoint-last.pth?download=true) | 2.47 | 244.2 | 290M |
|
|
| [TransDiff-L](https://huggingface.co/zhendch/Transdiff/resolve/main/transdiff_l/checkpoint-last.pth?download=true) | 2.25 | 244.3 | 683M |
|
|
| [TransDiff-H](https://huggingface.co/zhendch/Transdiff/resolve/main/transdiff_h/checkpoint-last.pth?download=true) | 1.69 | 282.0 | 1.3B |
|
|
| [TransDiff-B MRAR](https://huggingface.co/zhendch/Transdiff/resolve/main/transdiff_b_mrar/checkpoint-last.pth?download=true) | 1.49 | 282.2 | 290M |
|
|
| [TransDiff-L MRAR](https://huggingface.co/zhendch/Transdiff/resolve/main/transdiff_l_mrar/checkpoint-last.pth?download=true) | 1.61 | 293.4 | 683M |
|
|
| [TransDiff-H MRAR](https://huggingface.co/zhendch/Transdiff/resolve/main/transdiff_h_mrar/checkpoint-last.pth?download=true) | 1.42 | 301.2 | 1.3B |
|
|
| [TransDiff-L 512x512](https://huggingface.co/zhendch/Transdiff/resolve/main/transdiff_l_512/checkpoint-last.pth?download=true) | 2.51 | 286.6 | 683M |
|
|
|
|
### (Optional) Download Other Files
|
|
Download necessary [file](https://huggingface.co/zhendch/Transdiff/resolve/main/VIRTUAL_imagenet512.npz?download=true) and put it into folder `fid_stats/`, if you want to run evaluation on ImageNet 512x512.
|
|
Download [MRAR index file](https://huggingface.co/zhendch/Transdiff/resolve/main/Imagenet2012_mrar_files.txt?download=true) and put it into root of project, if you want to train TransDiff with MRAR.
|
|
|
|
### (Optional) Caching VAE Latents
|
|
|
|
Given that our data augmentation consists of simple center cropping and random flipping,
|
|
the VAE latents can be pre-computed and saved to `CACHED_PATH` to save computations during TransDiff training:
|
|
|
|
```
|
|
torchrun --nproc_per_node=8 --nnodes=1 --node_rank=0 \
|
|
main_cache.py \
|
|
--img_size 256 --vae_path ckpt/vae/kl16.ckpt --vae_embed_dim 16 \
|
|
--batch_size 128 \
|
|
--data_path ${IMAGENET_PATH} --cached_path ${CACHED_PATH}
|
|
```
|
|
|
|
## Usage
|
|
|
|
### Demo
|
|
Run our interactive visualization [demo](demo.ipynb).
|
|
|
|
### Training
|
|
Script for the TransDiff-L 1StepAR setting (Pretrain TransDiff-L with a width of 1024 channels, 800 epochs):
|
|
```
|
|
torchrun --nproc_per_node=8 --nnodes=8 --node_rank=${NODE_RANK} --master_addr=${MASTER_ADDR} --master_port=${MASTER_PORT} \
|
|
main.py \
|
|
--img_size 256 --vae_path ckpt/vae/kl16.ckpt --vae_embed_dim 16 --patch_size 1 \
|
|
--model transdiff_large --diffloss_w 1024 \
|
|
--diffusion_batch_mul 4 \
|
|
--epochs 800 --warmup_epochs 100 --blr 1.0e-4 --batch_size 32 \
|
|
--output_dir ${OUTPUT_DIR} --resume ${OUTPUT_DIR} \
|
|
--data_path ${IMAGENET_PATH}
|
|
```
|
|
- Training time is ~115h on 64 A100 GPUs with `--batch_size 32`.
|
|
- Add `--online_eval` to evaluate FID during training (every 50 epochs).
|
|
- (Optional) To train with cached VAE latents, add `--use_cached --cached_path ${CACHED_PATH}` to the arguments.
|
|
- (Optional) If the error 'Loss is nan, stopping training' frequently occurs during training when using mixed precision training with 'torch.cuda.amp.autocast()', you can add `--bf16` to the arguments.
|
|
- (Optional) If necessary, you can use gradient accumulation by setting `--gradient_accumulation_steps n`.
|
|
|
|
Script for the TransDiff-L MRAR setting (Finetune TransDiff-L MRAR with a width of 1024 channels, 40 epochs):
|
|
```
|
|
torchrun --nproc_per_node=8 --nnodes=8 --node_rank=${NODE_RANK} --master_addr=${MASTER_ADDR} --master_port=${MASTER_PORT} \
|
|
main.py \
|
|
--img_size 256 --vae_path ckpt/vae/kl16.ckpt --vae_embed_dim 16 --patch_size 1 \
|
|
--model transdiff_large --diffloss_w 1024 --mrar --bf16 \
|
|
--diffusion_batch_mul 2 \
|
|
--epochs 40 --warmup_epochs 10 --lr 5.0e-5 --batch_size 16 --gradient_accumulation_steps 2 \
|
|
--output_dir ${OUTPUT_DIR} --resume ${Transdiff-L_1StepAR_DIR} \
|
|
--data_path ${IMAGENET_PATH}
|
|
```
|
|
Script for the TransDiff-L 512x512 setting (Finetune TransDiff-L 512x512 with a width of 1024 channels, 150 epochs):
|
|
```
|
|
torchrun --nproc_per_node=8 --nnodes=8 --node_rank=${NODE_RANK} --master_addr=${MASTER_ADDR} --master_port=${MASTER_PORT} \
|
|
main.py \
|
|
--img_size 512 --vae_path ckpt/vae/kl16.ckpt --vae_embed_dim 16 --patch_size 1 \
|
|
--model transdiff_large --diffloss_w 1024 --ema_rate 0.999 --bf16 \
|
|
--diffusion_batch_mul 4 \
|
|
--epochs 150 --warmup_epochs 10 --lr 1.0e-4 --batch_size 16 --gradient_accumulation_steps 2 \
|
|
--only_train_diff \
|
|
--output_dir ${OUTPUT_DIR} --resume ${Transdiff-L_1StepAR_DIR} \
|
|
--data_path ${IMAGENET_PATH}
|
|
```
|
|
|
|
### Evaluation (ImageNet 256x256 and 512x512)
|
|
|
|
Evaluate TransDiff-L 1StepAR with classifier-free guidance:
|
|
```
|
|
torchrun --nproc_per_node=8 --nnodes=1 --node_rank=0 \
|
|
main.py \
|
|
--img_size 256 --vae_path ckpt/vae/kl16.ckpt --vae_embed_dim 16 --patch_size 1 \
|
|
--model transdiff_large --diffloss_w 1024 \
|
|
--output_dir ${OUTPUT_DIR} --resume ckpt/transdiff_l/ \
|
|
--evaluate --eval_bsz 256 --num_images 50000 \
|
|
--cfg 1.3 --scale_0 0.89 --scale_1 0.95
|
|
```
|
|
|
|
Evaluate TransDiff-L MRAR with classifier-free guidance:
|
|
```
|
|
torchrun --nproc_per_node=8 --nnodes=1 --node_rank=0 \
|
|
main.py \
|
|
--img_size 256 --vae_path ckpt/vae/kl16.ckpt --vae_embed_dim 16 --patch_size 1 \
|
|
--model transdiff_large --diffloss_w 1024 \
|
|
--output_dir ${OUTPUT_DIR} --resume ckpt/transdiff_l_mrar/ \
|
|
--evaluate --eval_bsz 256 --num_images 50000 \
|
|
--cfg 1.3 --scale_0 0.91 --scale_1 0.93
|
|
```
|
|
|
|
Evaluate TransDiff-L 512x512 with classifier-free guidance:
|
|
```
|
|
torchrun --nproc_per_node=8 --nnodes=1 --node_rank=0 \
|
|
main.py \
|
|
--img_size 512 --vae_path ckpt/vae/kl16.ckpt --vae_embed_dim 16 --patch_size 1 \
|
|
--model transdiff_large --diffloss_w 1024 \
|
|
--output_dir ${OUTPUT_DIR} --resume ckpt/transdiff_l_512/ \
|
|
--evaluate --eval_bsz 64 --num_images 50000 \
|
|
--cfg 1.3 --scale_0 0.87 --scale_1 0.87
|
|
```
|
|
|
|
More settings for Benchmark in paper:
|
|
|
|
| TransDiff Model | cfg | scale_0 | scale_1 |
|
|
|---------------------|------|---------|---------|
|
|
| TransDiff-B | 1.30 | 0.87 | 0.91 |
|
|
| TransDiff-L | 1.30 | 0.89 | 0.95 |
|
|
| TransDiff-H | 1.23 | 0.87 | 0.93 |
|
|
| TransDiff-B MRAR | 1.30 | 0.87 | 0.91 |
|
|
| TransDiff-L MRAR | 1.30 | 0.91 | 0.93 |
|
|
| TransDiff-H MRAR | 1.28 | 0.87 | 0.91 |
|
|
| TransDiff-L 512x512 | 1.30 | 0.87 | 0.87 |
|
|
|
|
## Acknowledgements
|
|
A large portion of codes in this repo is based on [MAR](https://github.com/LTH14/mar), [diffusers](https://github.com/huggingface/diffusers) and [timm](https://github.com/huggingface/pytorch-image-models).
|
|
|
|
## Contact
|
|
|
|
If you have any questions, feel free to contact me through email ([email protected]). Enjoy! |