metadata
license: other
base_model: flux/unknown-model
tags:
- flux
- flux-diffusers
- text-to-image
- diffusers
- simpletuner
- not-for-all-audiences
- lora
- template:sd-lora
- lycoris
inference: true
widget:
- text: unconditional (blank prompt)
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_0_0.png
- text: >-
The vehicle in the image is a luxury SUV with a bold and modern design. It
features a large chrome-accented grille, sleek LED headlights, and
sculpted body lines that enhance its aerodynamic look. The high ground
clearance and large alloy wheels suggest off-road capability, while chrome
trim and a panoramic sunroof add a touch of elegance. The rear is equipped
with slim LED taillights and dual exhaust outlets, emphasizing both style
and performance. | Length: 3663.0 mm | Width: 2050.0 mm | Height: 1145.0
mm | Wheelbase: 3000.0 mm
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_1_0.png
- text: >-
This image showcases the side of the luxury SUV, highlighting its bold and
modern design. The sculpted body lines and high beltline create a dynamic
and aerodynamic profile, while the large alloy wheels and high ground
clearance emphasize its off-road capability. Chrome trim around the
windows and a panoramic sunroof add a touch of sophistication. At the
rear, the slim LED taillights extend towards the side, seamlessly
integrating with the vehicle’s sleek silhouette. | Length: 4663.0 mm |
Width: 2050.0 mm | Height: 1145.0 mm | Wheelbase: 4000.0 mm
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_2_0.png
- text: >-
The vehicle in the image is a luxury SUV with a bold and modern design. It
features a large chrome-accented grille, sleek LED headlights, and
sculpted body lines that enhance its aerodynamic look. The high ground
clearance and large alloy wheels suggest off-road capability, while chrome
trim and a panoramic sunroof add a touch of elegance. The rear is equipped
with slim LED taillights and dual exhaust outlets, emphasizing both style
and performance.
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_3_0.png
- text: >-
The vehicle in the image is a luxury SUV with a bold and modern design. It
features a large chrome-accented grille, sleek LED headlights, and
sculpted body lines that enhance its aerodynamic look. The high ground
clearance and large alloy wheels suggest off-road capability, while chrome
trim and a panoramic sunroof add a touch of elegance. The rear is equipped
with slim LED taillights and dual exhaust outlets, emphasizing both style
and performance. | Length: 4663.0 mm | Width: 2050.0 mm | Height: 1145.0
mm | Wheelbase: 4000.0 mm
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_4_0.png
simpletuner-lora
This is a LyCORIS adapter derived from flux/unknown-model.
The main validation prompt used during training was:
The vehicle in the image is a luxury SUV with a bold and modern design. It features a large chrome-accented grille, sleek LED headlights, and sculpted body lines that enhance its aerodynamic look. The high ground clearance and large alloy wheels suggest off-road capability, while chrome trim and a panoramic sunroof add a touch of elegance. The rear is equipped with slim LED taillights and dual exhaust outlets, emphasizing both style and performance. | Length: 4663.0 mm | Width: 2050.0 mm | Height: 1145.0 mm | Wheelbase: 4000.0 mm
Validation settings
- CFG:
3.0
- CFG Rescale:
0.0
- Steps:
20
- Sampler:
FlowMatchEulerDiscreteScheduler
- Seed:
42
- Resolution:
1024x1024
- Skip-layer guidance:
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:

- Prompt
- unconditional (blank prompt)
- Negative Prompt
- blurry, cropped, ugly

- Prompt
- The vehicle in the image is a luxury SUV with a bold and modern design. It features a large chrome-accented grille, sleek LED headlights, and sculpted body lines that enhance its aerodynamic look. The high ground clearance and large alloy wheels suggest off-road capability, while chrome trim and a panoramic sunroof add a touch of elegance. The rear is equipped with slim LED taillights and dual exhaust outlets, emphasizing both style and performance. | Length: 3663.0 mm | Width: 2050.0 mm | Height: 1145.0 mm | Wheelbase: 3000.0 mm
- Negative Prompt
- blurry, cropped, ugly

- Prompt
- This image showcases the side of the luxury SUV, highlighting its bold and modern design. The sculpted body lines and high beltline create a dynamic and aerodynamic profile, while the large alloy wheels and high ground clearance emphasize its off-road capability. Chrome trim around the windows and a panoramic sunroof add a touch of sophistication. At the rear, the slim LED taillights extend towards the side, seamlessly integrating with the vehicle’s sleek silhouette. | Length: 4663.0 mm | Width: 2050.0 mm | Height: 1145.0 mm | Wheelbase: 4000.0 mm
- Negative Prompt
- blurry, cropped, ugly

- Prompt
- The vehicle in the image is a luxury SUV with a bold and modern design. It features a large chrome-accented grille, sleek LED headlights, and sculpted body lines that enhance its aerodynamic look. The high ground clearance and large alloy wheels suggest off-road capability, while chrome trim and a panoramic sunroof add a touch of elegance. The rear is equipped with slim LED taillights and dual exhaust outlets, emphasizing both style and performance.
- Negative Prompt
- blurry, cropped, ugly

- Prompt
- The vehicle in the image is a luxury SUV with a bold and modern design. It features a large chrome-accented grille, sleek LED headlights, and sculpted body lines that enhance its aerodynamic look. The high ground clearance and large alloy wheels suggest off-road capability, while chrome trim and a panoramic sunroof add a touch of elegance. The rear is equipped with slim LED taillights and dual exhaust outlets, emphasizing both style and performance. | Length: 4663.0 mm | Width: 2050.0 mm | Height: 1145.0 mm | Wheelbase: 4000.0 mm
- Negative Prompt
- blurry, cropped, ugly
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
- Training epochs: 0
- Training steps: 1500
- Learning rate: 0.0001
- Learning rate schedule: polynomial
- Warmup steps: 100
- Max grad norm: 2.0
- Effective batch size: 6
- Micro-batch size: 1
- Gradient accumulation steps: 1
- Number of GPUs: 6
- Gradient checkpointing: True
- Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flow_matching_loss=compatible'])
- Optimizer: adamw_bf16
- Trainable parameter precision: Pure BF16
- Caption dropout probability: 10.0%
LyCORIS Config:
{
"algo": "lokr",
"multiplier": 1.0,
"linear_dim": 10000,
"linear_alpha": 1,
"factor": 16,
"apply_preset": {
"target_module": [
"Attention",
"FeedForward"
],
"module_algo_map": {
"Attention": {
"factor": 16
},
"FeedForward": {
"factor": 8
}
}
}
}
Datasets
cardatasets_w_wlh2
- Repeats: 5
- Total number of images: ~4746
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
Inference
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
def download_adapter(repo_id: str):
import os
from huggingface_hub import hf_hub_download
adapter_filename = "pytorch_lora_weights.safetensors"
cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
os.makedirs(path_to_adapter, exist_ok=True)
hf_hub_download(
repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
)
return path_to_adapter_file
model_id = '/data/shared_workspace/zgt/text2car_dataset/FLUX.1-dev'
adapter_repo_id = 'zhengzhou/simpletuner-lora'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
wrapper.merge_to()
prompt = "The vehicle in the image is a luxury SUV with a bold and modern design. It features a large chrome-accented grille, sleek LED headlights, and sculpted body lines that enhance its aerodynamic look. The high ground clearance and large alloy wheels suggest off-road capability, while chrome trim and a panoramic sunroof add a touch of elegance. The rear is equipped with slim LED taillights and dual exhaust outlets, emphasizing both style and performance. | Length: 4663.0 mm | Width: 2050.0 mm | Height: 1145.0 mm | Wheelbase: 4000.0 mm"
## Optional: quantise the model to save on vram.
## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time.
#from optimum.quanto import quantize, freeze, qint8
#quantize(pipeline.transformer, weights=qint8)
#freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=1024,
height=1024,
guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")