|
--- |
|
library_name: stable-baselines3 |
|
tags: |
|
- LunarLander-v2 |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- stable-baselines3 |
|
model-index: |
|
- name: PPO |
|
results: |
|
- task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: LunarLander-v2 |
|
type: LunarLander-v2 |
|
metrics: |
|
- type: mean_reward |
|
value: 240.43 +/- 20.04 |
|
name: mean_reward |
|
verified: false |
|
license: mit |
|
--- |
|
|
|
# **PPO** Agent playing **LunarLander-v2** |
|
This is a trained model of a **PPO** agent playing **LunarLander-v2** |
|
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). |
|
|
|
## Usage (with Stable-baselines3) |
|
```python |
|
from huggingface_sb3 import load_from_hub |
|
repo_id = "zhiweiyoung/ppo-LunarLander-v2" # The repo_id |
|
filename = "zhiwei_ppo.zip" # The model filename.zip |
|
|
|
# When the model was trained on Python 3.8 the pickle protocol is 5 |
|
# But Python 3.6, 3.7 use protocol 4 |
|
# In order to get compatibility we need to: |
|
# 1. Install pickle5 (we done it at the beginning of the colab) |
|
# 2. Create a custom empty object we pass as parameter to PPO.load() |
|
custom_objects = { |
|
"learning_rate": 0.0, |
|
"lr_schedule": lambda _: 0.0, |
|
"clip_range": lambda _: 0.0, |
|
} |
|
|
|
checkpoint = load_from_hub(repo_id, filename) |
|
model = PPO.load(checkpoint, custom_objects=custom_objects, print_system_info=True) |
|
``` |
|
|