|
--- |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: /GenAI4HW/llama2_13b |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: outputs/llama2-13B-lora-QuArch_0_1_1_alpaca_filtered-answer-context-test-new |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
```yaml |
|
## General |
|
# base_model: meta-llama/Meta-Llama-3-8B-Instruct |
|
base_model: /GenAI4HW/llama2_13b |
|
# base_model: meta-llama/Llama-2-13b |
|
model_type: LlamaForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
# tokenizer_type: LlamaTokenizer |
|
output_dir: ./outputs/llama2-13B-lora-QuArch_0_1_1_alpaca_filtered-answer-context-test-new |
|
seed: 42 |
|
|
|
## Data Configuration |
|
datasets: |
|
# - path: ./data/QuArch_v0_1_0_alpaca_w_context.json # With abstract |
|
# - path: ./data/QuArch_v0_1_1_alpaca_format.json # With justification |
|
# - path: ./data/QuArch_v0_1_0_alpaca_mmlu.json # Without justification |
|
- path: ./data/QuArch_v0_1_1_alpaca_filtered_context/ |
|
type: alpaca |
|
data_file: train |
|
|
|
dataset_prepared_path: |
|
|
|
test_datasets: |
|
- path: ./data/QuArch_v0_1_1_alpaca_filtered_context/ |
|
type: alpaca |
|
split: test |
|
data_file: |
|
- test |
|
|
|
# - path: ./data/QuArch_v0_1_1_alpaca_filtered_context/ |
|
# type: alpaca |
|
# split: val |
|
# data_file: |
|
# - val |
|
|
|
## Model Configuration |
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
device_map: 'auto' |
|
|
|
## LoRA Configuration |
|
adapter: lora |
|
lora_r: 32 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_model_dir: |
|
lora_fan_in_fan_out: |
|
|
|
## Logging Configuration |
|
logging_dir: ./logs |
|
logging_steps: 10 |
|
wandb_project: |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
do_eval: true |
|
## Training Configuration |
|
sequence_len: 1024 |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
train_on_inputs: false |
|
group_by_length: false |
|
micro_batch_size: 1 |
|
gradient_accumulation_steps: 16 |
|
num_epochs: 30 |
|
warmup_steps: 10 |
|
weight_decay: 0.01 |
|
optimizer: adamw_torch |
|
lr_scheduler: linear |
|
learning_rate: 2e-5 |
|
gradient_checkpointing: false |
|
saves_per_epoch: 1 |
|
# save_steps: 0 |
|
# save_strategy: steps |
|
save_total_limit: 30 |
|
load_best_model_at_end: true |
|
greater_is_better: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
remove_unused_columns: true |
|
|
|
## Evaluation Configuration |
|
eval_sample_packing: False |
|
eval_batch_size: 1 |
|
evals_per_epoch: 1 |
|
# evaluation_strategy: epoch |
|
eval_max_new_tokens: 32 |
|
eval_table_size: |
|
# max_new_token: 32 |
|
# eval_causal_lm_metrics: sacrebleu |
|
|
|
# Others |
|
local_rank: |
|
xformers_attention: |
|
flash_attention: true |
|
s2_attention: |
|
debug: |
|
deepspeed: |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
# pad_token: <|end_of_text|> |
|
``` |
|
|
|
</details><br> |
|
|
|
# outputs/llama2-13B-lora-QuArch_0_1_1_alpaca_filtered-answer-context-test-new |
|
|
|
This model was trained from scratch on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0432 |
|
- Accuracy: 0.9808 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 32 |
|
- total_eval_batch_size: 2 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-------:|:----:|:---------------:|:--------:| |
|
| No log | 0.2105 | 1 | 5.1322 | 0.6154 | |
|
| No log | 0.8421 | 4 | 5.1271 | 0.6346 | |
|
| No log | 1.6842 | 8 | 5.0601 | 0.6538 | |
|
| 5.1323 | 2.5263 | 12 | 4.7743 | 0.7885 | |
|
| 5.1323 | 3.3684 | 16 | 4.0491 | 0.9231 | |
|
| 4.2735 | 4.2105 | 20 | 2.6444 | 0.8846 | |
|
| 4.2735 | 5.0526 | 24 | 1.0551 | 0.9615 | |
|
| 4.2735 | 5.8947 | 28 | 0.4698 | 0.6923 | |
|
| 1.2232 | 6.7368 | 32 | 0.3224 | 0.6731 | |
|
| 1.2232 | 7.5789 | 36 | 0.2527 | 1.0 | |
|
| 0.3083 | 8.4211 | 40 | 0.1972 | 1.0 | |
|
| 0.3083 | 9.2632 | 44 | 0.1372 | 0.9615 | |
|
| 0.3083 | 10.1053 | 48 | 0.0803 | 1.0 | |
|
| 0.1761 | 10.9474 | 52 | 0.0575 | 0.9808 | |
|
| 0.1761 | 11.7895 | 56 | 0.0475 | 0.9808 | |
|
| 0.116 | 12.6316 | 60 | 0.0444 | 0.9808 | |
|
| 0.116 | 13.4737 | 64 | 0.0463 | 0.9808 | |
|
| 0.116 | 14.3158 | 68 | 0.0489 | 0.9808 | |
|
| 0.0814 | 15.1579 | 72 | 0.0495 | 0.9808 | |
|
| 0.0814 | 16.0 | 76 | 0.0481 | 0.9808 | |
|
| 0.0709 | 16.8421 | 80 | 0.0469 | 0.9808 | |
|
| 0.0709 | 17.6842 | 84 | 0.0457 | 0.9808 | |
|
| 0.0709 | 18.5263 | 88 | 0.0455 | 0.9808 | |
|
| 0.0632 | 19.3684 | 92 | 0.0454 | 0.9808 | |
|
| 0.0632 | 20.2105 | 96 | 0.0459 | 0.9808 | |
|
| 0.0569 | 21.0526 | 100 | 0.0458 | 0.9808 | |
|
| 0.0569 | 21.8947 | 104 | 0.0446 | 0.9808 | |
|
| 0.0569 | 22.7368 | 108 | 0.0451 | 0.9808 | |
|
| 0.055 | 23.5789 | 112 | 0.0446 | 0.9808 | |
|
| 0.055 | 24.4211 | 116 | 0.0452 | 0.9808 | |
|
| 0.0581 | 25.2632 | 120 | 0.0432 | 0.9808 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.0 |
|
- Transformers 4.41.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |