|
--- |
|
license: apache-2.0 |
|
base_model: facebook/convnextv2-femto-1k-224 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: 10-convnextv2-femto-1k-224-finetuned-spiderTraining20-500 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# 10-convnextv2-femto-1k-224-finetuned-spiderTraining20-500 |
|
|
|
This model is a fine-tuned version of [facebook/convnextv2-femto-1k-224](https://huggingface.co/facebook/convnextv2-femto-1k-224) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4856 |
|
- Accuracy: 0.8388 |
|
- Precision: 0.8342 |
|
- Recall: 0.8349 |
|
- F1: 0.8332 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 25 |
|
- eval_batch_size: 25 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 100 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 1.9569 | 1.0 | 80 | 1.7758 | 0.5065 | 0.5330 | 0.5075 | 0.4959 | |
|
| 1.05 | 2.0 | 160 | 0.9583 | 0.7207 | 0.7400 | 0.7158 | 0.7102 | |
|
| 0.8342 | 3.0 | 240 | 0.7517 | 0.7568 | 0.7747 | 0.7420 | 0.7409 | |
|
| 0.7 | 4.0 | 320 | 0.6801 | 0.7928 | 0.7921 | 0.7890 | 0.7826 | |
|
| 0.5956 | 5.0 | 400 | 0.5913 | 0.8128 | 0.8130 | 0.8082 | 0.8061 | |
|
| 0.572 | 6.0 | 480 | 0.5533 | 0.8278 | 0.8259 | 0.8223 | 0.8217 | |
|
| 0.4786 | 7.0 | 560 | 0.5108 | 0.8348 | 0.8319 | 0.8308 | 0.8302 | |
|
| 0.4201 | 8.0 | 640 | 0.5064 | 0.8318 | 0.8286 | 0.8248 | 0.8252 | |
|
| 0.4486 | 9.0 | 720 | 0.4951 | 0.8408 | 0.8364 | 0.8363 | 0.8350 | |
|
| 0.4382 | 10.0 | 800 | 0.4856 | 0.8388 | 0.8342 | 0.8349 | 0.8332 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.3 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|