wav2vec2-base-common-voice-persian-colab

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1446
  • Wer: 0.6911

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 1.26 300 3.0670 1.0
3.3475 2.52 600 2.5530 1.0
3.3475 3.78 900 1.4598 0.9555
2.0348 5.04 1200 1.2189 0.8797
1.0817 6.3 1500 1.1242 0.8268
1.0817 7.56 1800 1.0764 0.7957
0.7973 8.82 2100 1.1023 0.7863
0.7973 10.08 2400 1.0583 0.7785
0.6514 11.34 2700 1.0963 0.7512
0.5878 12.61 3000 1.1200 0.7494
0.5878 13.87 3300 1.0396 0.7402
0.484 15.13 3600 1.1407 0.7340
0.484 16.39 3900 1.1534 0.7584
0.4384 17.65 4200 1.0973 0.7236
0.3966 18.91 4500 1.0623 0.7358
0.3966 20.17 4800 1.1655 0.7112
0.3408 21.43 5100 1.1825 0.7084
0.3408 22.69 5400 1.1436 0.7029
0.3274 23.95 5700 1.1077 0.6988
0.2948 25.21 6000 1.1454 0.7066
0.2948 26.47 6300 1.1411 0.6956
0.2545 27.73 6600 1.0952 0.6918
0.2545 28.99 6900 1.1446 0.6911

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.10.0+cu113
  • Datasets 1.18.3
  • Tokenizers 0.10.3
Downloads last month
34
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support