zohann's picture
Upload folder using huggingface_hub
91670c0 verified
import collections, queue
import numpy as np
import pyaudio
import webrtcvad
from halo import Halo
import torch
import torchaudio
class Audio(object):
"""Streams raw audio from microphone. Data is received in a separate thread, and stored in a buffer, to be read from."""
FORMAT = pyaudio.paInt16
# Network/VAD rate-space
RATE_PROCESS = 16000
CHANNELS = 1
BLOCKS_PER_SECOND = 50
def __init__(self, callback=None, device=None, input_rate=RATE_PROCESS):
def proxy_callback(in_data, frame_count, time_info, status):
#pylint: disable=unused-argument
callback(in_data)
return (None, pyaudio.paContinue)
if callback is None: callback = lambda in_data: self.buffer_queue.put(in_data)
self.buffer_queue = queue.Queue()
self.device = device
self.input_rate = input_rate
self.sample_rate = self.RATE_PROCESS
self.block_size = int(self.RATE_PROCESS / float(self.BLOCKS_PER_SECOND))
self.block_size_input = int(self.input_rate / float(self.BLOCKS_PER_SECOND))
self.pa = pyaudio.PyAudio()
kwargs = {
'format': self.FORMAT,
'channels': self.CHANNELS,
'rate': self.input_rate,
'input': True,
'frames_per_buffer': self.block_size_input,
'stream_callback': proxy_callback,
}
self.chunk = None
# if not default device
if self.device:
kwargs['input_device_index'] = self.device
self.stream = self.pa.open(**kwargs)
self.stream.start_stream()
def read(self):
"""Return a block of audio data, blocking if necessary."""
return self.buffer_queue.get()
def destroy(self):
self.stream.stop_stream()
self.stream.close()
self.pa.terminate()
frame_duration_ms = property(lambda self: 1000 * self.block_size // self.sample_rate)
class VADAudio(Audio):
"""Filter & segment audio with voice activity detection."""
def __init__(self, aggressiveness=3, device=None, input_rate=None):
super().__init__(device=device, input_rate=input_rate)
self.vad = webrtcvad.Vad(aggressiveness)
def frame_generator(self):
"""Generator that yields all audio frames from microphone."""
if self.input_rate == self.RATE_PROCESS:
while True:
yield self.read()
else:
raise Exception("Resampling required")
def vad_collector(self, padding_ms=300, ratio=0.75, frames=None):
"""Generator that yields series of consecutive audio frames comprising each utterence, separated by yielding a single None.
Determines voice activity by ratio of frames in padding_ms. Uses a buffer to include padding_ms prior to being triggered.
Example: (frame, ..., frame, None, frame, ..., frame, None, ...)
|---utterence---| |---utterence---|
"""
if frames is None: frames = self.frame_generator()
num_padding_frames = padding_ms // self.frame_duration_ms
ring_buffer = collections.deque(maxlen=num_padding_frames)
triggered = False
for frame in frames:
if len(frame) < 640:
return
is_speech = self.vad.is_speech(frame, self.sample_rate)
if not triggered:
ring_buffer.append((frame, is_speech))
num_voiced = len([f for f, speech in ring_buffer if speech])
if num_voiced > ratio * ring_buffer.maxlen:
triggered = True
for f, s in ring_buffer:
yield f
ring_buffer.clear()
else:
yield frame
ring_buffer.append((frame, is_speech))
num_unvoiced = len([f for f, speech in ring_buffer if not speech])
if num_unvoiced > ratio * ring_buffer.maxlen:
triggered = False
yield None
ring_buffer.clear()
def main(ARGS):
# Start audio with VAD
vad_audio = VADAudio(aggressiveness=ARGS.webRTC_aggressiveness,
device=ARGS.device,
input_rate=ARGS.rate)
print("Listening (ctrl-C to exit)...")
frames = vad_audio.vad_collector()
# load silero VAD
torchaudio.set_audio_backend("soundfile")
model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',
model=ARGS.silaro_model_name,
force_reload= ARGS.reload)
(get_speech_ts,_,_, _,_, _, _) = utils
# Stream from microphone to DeepSpeech using VAD
spinner = None
if not ARGS.nospinner:
spinner = Halo(spinner='line')
wav_data = bytearray()
for frame in frames:
if frame is not None:
if spinner: spinner.start()
wav_data.extend(frame)
else:
if spinner: spinner.stop()
print("webRTC has detected a possible speech")
newsound= np.frombuffer(wav_data,np.int16)
audio_float32=Int2Float(newsound)
time_stamps =get_speech_ts(audio_float32, model,num_steps=ARGS.num_steps,trig_sum=ARGS.trig_sum,neg_trig_sum=ARGS.neg_trig_sum,
num_samples_per_window=ARGS.num_samples_per_window,min_speech_samples=ARGS.min_speech_samples,
min_silence_samples=ARGS.min_silence_samples)
if(len(time_stamps)>0):
print("silero VAD has detected a possible speech")
else:
print("silero VAD has detected a noise")
print()
wav_data = bytearray()
def Int2Float(sound):
_sound = np.copy(sound) #
abs_max = np.abs(_sound).max()
_sound = _sound.astype('float32')
if abs_max > 0:
_sound *= 1/abs_max
audio_float32 = torch.from_numpy(_sound.squeeze())
return audio_float32
if __name__ == '__main__':
DEFAULT_SAMPLE_RATE = 16000
import argparse
parser = argparse.ArgumentParser(description="Stream from microphone to webRTC and silero VAD")
parser.add_argument('-v', '--webRTC_aggressiveness', type=int, default=3,
help="Set aggressiveness of webRTC: an integer between 0 and 3, 0 being the least aggressive about filtering out non-speech, 3 the most aggressive. Default: 3")
parser.add_argument('--nospinner', action='store_true',
help="Disable spinner")
parser.add_argument('-d', '--device', type=int, default=None,
help="Device input index (Int) as listed by pyaudio.PyAudio.get_device_info_by_index(). If not provided, falls back to PyAudio.get_default_device().")
parser.add_argument('-name', '--silaro_model_name', type=str, default="silero_vad",
help="select the name of the model. You can select between 'silero_vad',''silero_vad_micro','silero_vad_micro_8k','silero_vad_mini','silero_vad_mini_8k'")
parser.add_argument('--reload', action='store_true',help="download the last version of the silero vad")
parser.add_argument('-ts', '--trig_sum', type=float, default=0.25,
help="overlapping windows are used for each audio chunk, trig sum defines average probability among those windows for switching into triggered state (speech state)")
parser.add_argument('-nts', '--neg_trig_sum', type=float, default=0.07,
help="same as trig_sum, but for switching from triggered to non-triggered state (non-speech)")
parser.add_argument('-N', '--num_steps', type=int, default=8,
help="nubmer of overlapping windows to split audio chunk into (we recommend 4 or 8)")
parser.add_argument('-nspw', '--num_samples_per_window', type=int, default=4000,
help="number of samples in each window, our models were trained using 4000 samples (250 ms) per window, so this is preferable value (lesser values reduce quality)")
parser.add_argument('-msps', '--min_speech_samples', type=int, default=10000,
help="minimum speech chunk duration in samples")
parser.add_argument('-msis', '--min_silence_samples', type=int, default=500,
help=" minimum silence duration in samples between to separate speech chunks")
ARGS = parser.parse_args()
ARGS.rate=DEFAULT_SAMPLE_RATE
main(ARGS)