|
--- |
|
library_name: peft |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
base_model: NousResearch/Llama-2-7b-hf |
|
model-index: |
|
- name: MathLlama-7b |
|
results: [] |
|
--- |
|
|
|
Edit - Retraining model messed up the output. Maybe cz of my chat template. I will fine tune and update this. Stay Tuned :) |
|
|
|
axolotl version: `0.3.0` |
|
```yaml |
|
base_model: NousResearch/Llama-2-7b-hf |
|
model_type: LlamaForCausalLM |
|
tokenizer_type: LlamaTokenizer |
|
is_llama_derived_model: true |
|
hub_model_id: MathLlama-7b |
|
|
|
load_in_8bit: false |
|
load_in_4bit: true |
|
strict: false |
|
|
|
datasets: |
|
- path: zorooo/Eval_Math_Derivatives |
|
type: alpaca |
|
dataset_prepared_path: |
|
val_set_size: 0.05 |
|
output_dir: ./qlora-out-2 |
|
|
|
adapter: qlora |
|
lora_model_dir: |
|
|
|
sequence_len: 2048 |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
|
|
lora_r: 32 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_modules: |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
|
|
wandb_project: axolotl_run_1_math_llama |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: math_llama_run2 |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 4 |
|
micro_batch_size: 2 |
|
num_epochs: 5 |
|
optimizer: paged_adamw_32bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.0002 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: true |
|
fp16: false |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_steps: 100 |
|
evals_per_epoch: 4 |
|
eval_table_size: |
|
saves_per_epoch: 1 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
bos_token: "<s>" |
|
eos_token: "</s>" |
|
unk_token: "<unk>" |
|
``` |
|
|
|
</details><br> |
|
|
|
# MathLlama-7b |
|
|
|
This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1702 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 0.1242 | 0.04 | 1 | 0.1574 | |
|
| 0.1265 | 0.27 | 7 | 0.1573 | |
|
| 0.1644 | 0.54 | 14 | 0.1574 | |
|
| 0.1213 | 0.82 | 21 | 0.1566 | |
|
| 0.1219 | 1.06 | 28 | 0.1560 | |
|
| 0.111 | 1.33 | 35 | 0.1577 | |
|
| 0.1289 | 1.6 | 42 | 0.1562 | |
|
| 0.1241 | 1.87 | 49 | 0.1551 | |
|
| 0.1254 | 2.12 | 56 | 0.1592 | |
|
| 0.1376 | 2.39 | 63 | 0.1646 | |
|
| 0.132 | 2.66 | 70 | 0.1611 | |
|
| 0.1165 | 2.93 | 77 | 0.1568 | |
|
| 0.1047 | 3.18 | 84 | 0.1698 | |
|
| 0.0918 | 3.46 | 91 | 0.1717 | |
|
| 0.1022 | 3.73 | 98 | 0.1677 | |
|
| 0.1136 | 4.0 | 105 | 0.1661 | |
|
| 0.0856 | 4.25 | 112 | 0.1733 | |
|
| 0.0834 | 4.52 | 119 | 0.1702 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.7.2.dev0 |
|
- Transformers 4.37.0.dev0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |