|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224-in21k |
|
tags: |
|
- image-classification |
|
- vision |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: vit-base-beans |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vit-base-beans |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0079 |
|
- Accuracy: 1.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 1337 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- total_train_batch_size: 16 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Accuracy | Validation Loss | |
|
|:-------------:|:-----:|:----:|:--------:|:---------------:| |
|
| 0.2859 | 1.0 | 130 | 0.9624 | 0.2189 | |
|
| 0.1316 | 2.0 | 260 | 0.9699 | 0.1334 | |
|
| 0.1438 | 3.0 | 390 | 0.9699 | 0.0981 | |
|
| 0.0833 | 4.0 | 520 | 0.9925 | 0.0656 | |
|
| 0.1107 | 5.0 | 650 | 0.9774 | 0.0817 | |
|
| 0.098 | 11.0 | 715 | 0.9925 | 0.0570 | |
|
| 0.0935 | 12.0 | 780 | 1.0 | 0.0418 | |
|
| 0.0907 | 13.0 | 845 | 0.9699 | 0.1093 | |
|
| 0.0947 | 14.0 | 910 | 1.0 | 0.0347 | |
|
| 0.1259 | 15.0 | 975 | 0.9850 | 0.0710 | |
|
| 0.0325 | 16.0 | 1040 | 0.9774 | 0.0587 | |
|
| 0.1397 | 17.0 | 1105 | 0.9925 | 0.0495 | |
|
| 0.0456 | 18.0 | 1170 | 0.9774 | 0.0519 | |
|
| 0.0439 | 19.0 | 1235 | 1.0 | 0.0216 | |
|
| 0.0484 | 20.0 | 1300 | 0.9925 | 0.0316 | |
|
| 0.0276 | 21.0 | 1365 | 1.0 | 0.0192 | |
|
| 0.0348 | 22.0 | 1430 | 1.0 | 0.0177 | |
|
| 0.0326 | 23.0 | 1495 | 1.0 | 0.0175 | |
|
| 0.1014 | 24.0 | 1560 | 0.9925 | 0.0235 | |
|
| 0.0395 | 25.0 | 1625 | 0.9850 | 0.0451 | |
|
| 0.0265 | 26.0 | 1690 | 0.9925 | 0.0297 | |
|
| 0.0569 | 27.0 | 1755 | 0.9925 | 0.0263 | |
|
| 0.0666 | 28.0 | 1820 | 0.9850 | 0.0245 | |
|
| 0.0285 | 29.0 | 1885 | 0.9774 | 0.0418 | |
|
| 0.0892 | 30.0 | 1950 | 0.9925 | 0.0204 | |
|
| 0.0371 | 31.0 | 2015 | 0.9850 | 0.0339 | |
|
| 0.0105 | 32.0 | 2080 | 1.0 | 0.0143 | |
|
| 0.0563 | 33.0 | 2145 | 1.0 | 0.0140 | |
|
| 0.0573 | 34.0 | 2210 | 1.0 | 0.0102 | |
|
| 0.0409 | 35.0 | 2275 | 1.0 | 0.0096 | |
|
| 0.0523 | 36.0 | 2340 | 0.9925 | 0.0149 | |
|
| 0.0131 | 37.0 | 2405 | 0.9925 | 0.0197 | |
|
| 0.0329 | 38.0 | 2470 | 1.0 | 0.0109 | |
|
| 0.0577 | 39.0 | 2535 | 1.0 | 0.0096 | |
|
| 0.0085 | 40.0 | 2600 | 0.9925 | 0.0147 | |
|
| 0.0618 | 41.0 | 2665 | 1.0 | 0.0094 | |
|
| 0.0847 | 42.0 | 2730 | 0.9925 | 0.0197 | |
|
| 0.0291 | 43.0 | 2795 | 1.0 | 0.0089 | |
|
| 0.0568 | 44.0 | 2860 | 1.0 | 0.0087 | |
|
| 0.0077 | 45.0 | 2925 | 1.0 | 0.0104 | |
|
| 0.008 | 46.0 | 2990 | 1.0 | 0.0138 | |
|
| 0.0272 | 47.0 | 3055 | 1.0 | 0.0081 | |
|
| 0.008 | 48.0 | 3120 | 1.0 | 0.0084 | |
|
| 0.0112 | 49.0 | 3185 | 1.0 | 0.0082 | |
|
| 0.013 | 50.0 | 3250 | 1.0 | 0.0079 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.0.dev0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|