|
--- |
|
language: |
|
- eu |
|
license: apache-2.0 |
|
base_model: openai/whisper-large |
|
tags: |
|
- whisper-event |
|
- generated_from_trainer |
|
datasets: |
|
- mozilla-foundation/common_voice_16_1 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Large Basque |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: mozilla-foundation/common_voice_16_1 eu |
|
type: mozilla-foundation/common_voice_16_1 |
|
config: eu |
|
split: test |
|
args: eu |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 8.144442707519149 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Large Basque |
|
|
|
This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the mozilla-foundation/common_voice_16_1 eu dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4111 |
|
- Wer: 8.1444 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 256 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 40000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:-----:|:---------------:|:-------:| |
|
| 0.004 | 10.04 | 1000 | 0.2314 | 10.6603 | |
|
| 0.0028 | 20.08 | 2000 | 0.2480 | 10.2783 | |
|
| 0.0027 | 30.11 | 3000 | 0.2492 | 10.0379 | |
|
| 0.0005 | 40.15 | 4000 | 0.2753 | 9.3784 | |
|
| 0.0016 | 50.19 | 5000 | 0.2489 | 9.3003 | |
|
| 0.0006 | 60.23 | 6000 | 0.2599 | 9.0023 | |
|
| 0.0011 | 70.26 | 7000 | 0.2606 | 8.9378 | |
|
| 0.0005 | 80.3 | 8000 | 0.2723 | 8.9270 | |
|
| 0.0001 | 90.34 | 9000 | 0.2764 | 8.5304 | |
|
| 0.0011 | 100.38 | 10000 | 0.2668 | 8.8977 | |
|
| 0.0001 | 110.41 | 11000 | 0.2856 | 8.3701 | |
|
| 0.0 | 120.45 | 12000 | 0.3045 | 8.2890 | |
|
| 0.0 | 130.49 | 13000 | 0.3149 | 8.2441 | |
|
| 0.0 | 140.53 | 14000 | 0.3241 | 8.2285 | |
|
| 0.0 | 150.56 | 15000 | 0.3336 | 8.2060 | |
|
| 0.0 | 160.6 | 16000 | 0.3433 | 8.1601 | |
|
| 0.0 | 170.64 | 17000 | 0.3537 | 8.1806 | |
|
| 0.0 | 180.68 | 18000 | 0.3634 | 8.1874 | |
|
| 0.0 | 190.72 | 19000 | 0.3738 | 8.1786 | |
|
| 0.0 | 200.75 | 20000 | 0.3848 | 8.2441 | |
|
| 0.0 | 210.79 | 21000 | 0.3952 | 8.2324 | |
|
| 0.0 | 220.83 | 22000 | 0.4030 | 8.2480 | |
|
| 0.0001 | 230.87 | 23000 | 0.2919 | 8.4268 | |
|
| 0.0 | 240.9 | 24000 | 0.3137 | 8.1865 | |
|
| 0.0 | 250.94 | 25000 | 0.3271 | 8.1884 | |
|
| 0.0 | 260.98 | 26000 | 0.3378 | 8.1825 | |
|
| 0.0 | 271.02 | 27000 | 0.3472 | 8.1865 | |
|
| 0.0 | 281.05 | 28000 | 0.3556 | 8.2031 | |
|
| 0.0 | 291.09 | 29000 | 0.3637 | 8.2099 | |
|
| 0.0 | 301.13 | 30000 | 0.3710 | 8.1933 | |
|
| 0.0 | 311.17 | 31000 | 0.3781 | 8.1874 | |
|
| 0.0 | 321.2 | 32000 | 0.3845 | 8.1679 | |
|
| 0.0 | 331.24 | 33000 | 0.3905 | 8.1601 | |
|
| 0.0 | 341.28 | 34000 | 0.3971 | 8.1640 | |
|
| 0.0 | 351.32 | 35000 | 0.4022 | 8.1611 | |
|
| 0.0 | 361.36 | 36000 | 0.4046 | 8.1562 | |
|
| 0.0 | 371.39 | 37000 | 0.4073 | 8.1523 | |
|
| 0.0 | 381.43 | 38000 | 0.4093 | 8.1493 | |
|
| 0.0 | 391.47 | 39000 | 0.4107 | 8.1513 | |
|
| 0.0 | 401.51 | 40000 | 0.4111 | 8.1444 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.2.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|