zuazo's picture
End of training
34540a6 verified
metadata
language:
  - gl
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
model-index:
  - name: Whisper Large-V2 Galician
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_13_0 gl
          type: mozilla-foundation/common_voice_13_0
          config: gl
          split: validation
          args: gl
        metrics:
          - name: Wer
            type: wer
            value: 5.701587521184242

Whisper Large-V2 Galician

This model is a fine-tuned version of openai/whisper-large-v2 on the mozilla-foundation/common_voice_13_0 gl dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2981
  • Wer: 5.7016

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0659 5.83 1000 0.1663 5.9593
0.0164 11.66 2000 0.1947 5.5044
0.0069 17.49 3000 0.2165 5.7500
0.0052 23.32 4000 0.2292 5.9212
0.0032 29.15 5000 0.2320 5.8884
0.0037 34.99 6000 0.2434 6.0647
0.0022 40.82 7000 0.2465 6.1114
0.0019 46.65 8000 0.2531 5.8590
0.0009 52.48 9000 0.2567 5.8451
0.001 58.31 10000 0.2718 5.7673
0.0011 64.14 11000 0.2659 6.1045
0.0008 69.97 12000 0.2765 6.0405
0.0006 75.8 13000 0.2793 6.0250
0.0004 81.63 14000 0.2848 6.0025
0.0005 87.46 15000 0.2790 5.9454
0.0002 93.29 16000 0.2884 5.8175
0.0002 99.13 17000 0.2913 5.7898
0.0001 104.96 18000 0.2901 5.7258
0.0001 110.79 19000 0.2991 5.7050
0.0001 116.62 20000 0.2981 5.7016

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1