whisper-medium-es / README.md
zuazo's picture
End of training
e651bbd
metadata
language:
  - es
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
model-index:
  - name: Whisper Medium Spanish
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_13_0 es
          type: mozilla-foundation/common_voice_13_0
          config: es
          split: test
          args: es
        metrics:
          - name: Wer
            type: wer
            value: 5.408751772230669

Whisper Medium Spanish

This model is a fine-tuned version of openai/whisper-medium on the mozilla-foundation/common_voice_13_0 es dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1915
  • Wer: 5.4088

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss Wer
0.0917 2.0 1000 0.1944 6.8560
0.0927 4.0 2000 0.1817 6.1439
0.0456 6.01 3000 0.1805 6.2626
0.0343 8.01 4000 0.2097 6.1773
0.0046 10.01 5000 0.2292 5.9374
0.0829 12.01 6000 0.1814 6.0644
0.0021 14.01 7000 0.2318 5.7096
0.0288 16.01 8000 0.1871 5.5755
0.1297 18.02 9000 0.1831 5.6885
0.0377 20.02 10000 0.1915 5.4088

Framework versions

  • Transformers 4.33.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3