metadata
base_model: llm-jp/llm-jp-3-13b
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
Uploaded model
- Developed by: 84basi
- License: apache-2.0
- Finetuned from model : llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
%%capture
!pip install unsloth
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
from unsloth import FastLanguageModel
import torch
import json
model_name = "84basi/llm-jp-3-13b-finetune-2.1"
token = "Hugging Face Token" #@param {type:"string"}
max_seq_length = 2048
dtype = None
load_in_4bit = True
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = model_name,
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
token = token,
)
FastLanguageModel.for_inference(model)
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
from tqdm import tqdm
results = []
for dt in tqdm(datasets):
input = dt["input"]
prompt = f"""### 指示\n{input}\n### 回答\n"""
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
with open(f"/content/llm-jp-3-13b-finetune-2.1_output-2.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write('\n')
!pip install python-docx
import json
from docx import Document # pip install python-docxでインストールする
from docx.shared import Inches, Pt, RGBColor
from docx.enum.text import WD_ALIGN_PARAGRAPH
def read_jsonl_data(jsonl_path):
"""
提出用jsonlを読み、json形式で返す
Args:
jsonl_path (str): 提出用jsonlへのパス
Returns:
jsonデータ (list of dict)
"""
results = []
with open(jsonl_path, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if line:
try:
results.append(json.loads(line))
except json.JSONDecodeError as e:
print(f"JSONデコードエラー(行内容を確認してください): {e}")
return results
def json_to_word(json_data, output_file):
"""
JSONデータをWord文書に変換する
Args:
json_data (list of dict): JSONデータのリスト
output_file (str): 出力するWordファイルの名前
"""
doc = Document()
title = doc.add_heading('LLM Output Analysis', 0)
title.alignment = WD_ALIGN_PARAGRAPH.CENTER
for item in json_data:
task_id = item.get("task_id", "No Task ID")
doc.add_heading(f'Task ID: {task_id}', level=1)
doc.add_heading('Input:', level=2)
input_text = item.get("input", "No Input")
input_para = doc.add_paragraph()
input_para.add_run(input_text).bold = False
doc.add_heading('Output:', level=2)
output_text = item.get("output", "No Output")
output_para = doc.add_paragraph()
output_para.add_run(output_text).bold = False
doc.add_paragraph('=' * 50)
doc.save(output_file)
jsonl_path = '/content/llm-jp-3-13b-finetune-2.1_output-2.jsonl'
output_file = '/content/llm-jp-3-13b-finetune-2.1_output-2.docx'
jsonl_data = read_jsonl_data(jsonl_path)
json_to_word(jsonl_data, output_file)