AngelPanizo's picture
Add BERTopic model
c994429 verified
metadata
tags:
  - bertopic
library_name: bertopic
pipeline_tag: text-classification

MARTINI_enrich_BERTopic_healingivermectin

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_healingivermectin")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 5
  • Number of training documents: 260
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 ivermectin - fenbendazole - antitumor - cures - cyanide 22 -1_ivermectin_fenbendazole_antitumor_cures
0 ivermectin - healing - bacterial - hcq - honey 107 0_ivermectin_healing_bacterial_hcq
1 parasitic - pinworms - cancers - schizophrenic - nematode 54 1_parasitic_pinworms_cancers_schizophrenic
2 vaccines - pfizer - conspiracy - deaths - mmr 41 2_vaccines_pfizer_conspiracy_deaths
3 download - recordings - telegram - 700mb - hello 36 3_download_recordings_telegram_700mb

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12