ALM-AHME's picture
update model card README.md
1012b2f
metadata
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: >-
      beit-large-patch16-224-finetuned-BreastCancer-Classification-BreakHis-AH-60-20-20-Shuffled
    results: []

beit-large-patch16-224-finetuned-BreastCancer-Classification-BreakHis-AH-60-20-20-Shuffled

This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0146
  • Accuracy: 0.9958

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.9
  • num_epochs: 15

Training results

Training Loss Epoch Step Accuracy Validation Loss
0.5847 1.0 199 0.8030 0.4640
0.2856 2.0 398 0.9354 0.1753
0.156 3.0 597 0.9552 0.1179
0.1049 4.0 796 0.9585 0.1043
0.1399 5.0 995 0.9760 0.0673
0.0423 6.0 1194 0.9802 0.0455
0.078 7.0 1393 0.9802 0.0554
0.1769 8.0 1592 0.9764 0.0556
0.0568 9.0 1791 0.9807 0.0569
0.0728 10.0 1990 0.9915 0.0234
0.0229 11.0 2189 0.9910 0.0240
0.0561 12.0 2388 0.9901 0.0352
0.014 13.0 2587 0.9797 0.0749
0.096 14.0 2786 0.9934 0.0268
0.0005 15.0 2985 0.0146 0.9958

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3