ALM-AHME's picture
update model card README.md
1012b2f
---
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: beit-large-patch16-224-finetuned-BreastCancer-Classification-BreakHis-AH-60-20-20-Shuffled
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# beit-large-patch16-224-finetuned-BreastCancer-Classification-BreakHis-AH-60-20-20-Shuffled
This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0146
- Accuracy: 0.9958
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.9
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| 0.5847 | 1.0 | 199 | 0.8030 | 0.4640 |
| 0.2856 | 2.0 | 398 | 0.9354 | 0.1753 |
| 0.156 | 3.0 | 597 | 0.9552 | 0.1179 |
| 0.1049 | 4.0 | 796 | 0.9585 | 0.1043 |
| 0.1399 | 5.0 | 995 | 0.9760 | 0.0673 |
| 0.0423 | 6.0 | 1194 | 0.9802 | 0.0455 |
| 0.078 | 7.0 | 1393 | 0.9802 | 0.0554 |
| 0.1769 | 8.0 | 1592 | 0.9764 | 0.0556 |
| 0.0568 | 9.0 | 1791 | 0.9807 | 0.0569 |
| 0.0728 | 10.0 | 1990 | 0.9915 | 0.0234 |
| 0.0229 | 11.0 | 2189 | 0.9910 | 0.0240 |
| 0.0561 | 12.0 | 2388 | 0.9901 | 0.0352 |
| 0.014 | 13.0 | 2587 | 0.9797 | 0.0749 |
| 0.096 | 14.0 | 2786 | 0.9934 | 0.0268 |
| 0.0005 | 15.0 | 2985 | 0.0146 | 0.9958 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3