ALM-AHME's picture
update model card README.md
d6a8b92
metadata
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: >-
      beit-large-patch16-224-finetuned-Lesion-Classification-HAM10000-AH-60-20-20-Shuffled
    results: []

beit-large-patch16-224-finetuned-Lesion-Classification-HAM10000-AH-60-20-20-Shuffled

This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0487
  • Accuracy: 0.9893

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.9
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1055 1.0 114 2.0091 0.1601
1.6582 2.0 229 1.5953 0.4187
1.2399 3.0 343 1.1053 0.5977
0.8417 4.0 458 0.7602 0.7241
0.5517 5.0 572 0.5651 0.8013
0.5777 6.0 687 0.3980 0.8768
0.408 7.0 801 0.2912 0.9154
0.2395 8.0 916 0.2185 0.9417
0.3613 9.0 1030 0.1753 0.9475
0.2408 10.0 1145 0.1353 0.9614
0.2777 11.0 1259 0.0699 0.9860
0.1528 11.95 1368 0.0487 0.9893

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3