|
--- |
|
base_model: deepseek-ai/deepseek-coder-6.7b-base |
|
library_name: peft |
|
pipeline_tag: text-generation |
|
tags: |
|
- deepseek-coder |
|
- lora |
|
- transformers |
|
--- |
|
|
|
# Model Card: ColabMind-Coder-6.7B-LoRA |
|
|
|
## Model Details |
|
- **Base Model:** deepseek-ai/deepseek-coder-6.7b-base |
|
- **Technique:** LoRA fine-tuning with PEFT |
|
- **Language:** English, programming languages (Python, Machine Learning) |
|
- **Type:** Causal LM for code generation |
|
|
|
## Intended Uses |
|
- **Direct Use:** Code completion, code explanation, small script generation |
|
- **Downstream Use:** Can be fine-tuned for domain-specific code tasks |
|
- **Out of Scope:** Malicious code generation, production-grade critical systems without human review |
|
|
|
## Training |
|
- **Data:** Filtered samples from The-Stack-v2 & curated coding datasets |
|
- **Procedure:** LoRA fine-tuning on Google Colab (T4 GPU, 8GB VRAM) |
|
- **Precision:** Mixed fp16 |
|
|
|
## Limitations |
|
- May produce incorrect or insecure code |
|
- Bias from training data may persist |
|
- Not optimized for very large-scale projects |
|
|
|
## Quick Start |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
|
|
model = AutoModelForCausalLM.from_pretrained("Agasthya0/colabmind-coder-6.7b-lora") |
|
tokenizer = AutoTokenizer.from_pretrained("Agasthya0/colabmind-coder-6.7b-lora") |
|
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
print(pipe("def fibonacci(n):")[0]["generated_text"]) |
|
|