metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.937
- name: F1
type: f1
value: 0.9372331942198677
- task:
type: text-classification
name: Text Classification
dataset:
name: emotion
type: emotion
config: default
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.924
verified: true
- name: Precision Macro
type: precision
value: 0.8811256547088461
verified: true
- name: Precision Micro
type: precision
value: 0.924
verified: true
- name: Precision Weighted
type: precision
value: 0.9250809835160841
verified: true
- name: Recall Macro
type: recall
value: 0.8882276452967225
verified: true
- name: Recall Micro
type: recall
value: 0.924
verified: true
- name: Recall Weighted
type: recall
value: 0.924
verified: true
- name: F1 Macro
type: f1
value: 0.8844059421244559
verified: true
- name: F1 Micro
type: f1
value: 0.924
verified: true
- name: F1 Weighted
type: f1
value: 0.9243911585312775
verified: true
- name: loss
type: loss
value: 0.15944455564022064
verified: true
distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set:
- Loss: 0.1413
- Accuracy: 0.937
- F1: 0.9372
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.7628 | 1.0 | 250 | 0.2489 | 0.9155 | 0.9141 |
0.2014 | 2.0 | 500 | 0.1716 | 0.928 | 0.9283 |
0.1351 | 3.0 | 750 | 0.1456 | 0.937 | 0.9374 |
0.1046 | 4.0 | 1000 | 0.1440 | 0.9355 | 0.9349 |
0.0877 | 5.0 | 1250 | 0.1413 | 0.937 | 0.9372 |
Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1