gme-Qwen2-VL-2B-Instruct / gme_inference.py
izhx's picture
Create gme_inference.py
22270be verified
raw
history blame
13.4 kB
from __future__ import annotations
import logging
import math
import os
from typing import Dict, List, Optional
import torch
from PIL import Image
from torch.utils.data import DataLoader
from tqdm.autonotebook import tqdm
from transformers import AutoModelForVision2Seq, AutoProcessor
class GmeQwen2VL:
def __init__(
self,
model_name: str = "Alibaba-NLP/gme-Qwen2-VL-2B-Instruct",
model_path: Optional[str] = None,
device: str = "cuda" if torch.cuda.is_available() else "cpu",
min_image_tokens=256,
max_image_tokens=1280,
max_length=1800,
**kwargs,
) -> None:
model_name = model_path or model_name
self.base = AutoModelForVision2Seq.from_pretrained(
model_name, torch_dtype=torch.float16, **kwargs
)
self.base.eval()
self.normalize = True
self.device = device
min_pixels = min_image_tokens * 28 * 28
max_pixels = max_image_tokens * 28 * 28
self.max_length = max_length
self.processor = AutoProcessor.from_pretrained(
model_name, min_pixels=min_pixels, max_pixels=max_pixels, **kwargs
)
self.processor.tokenizer.padding_side = 'right'
self.defualt_instruction = 'You are a helpful assistant.'
self.sep = ' '
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
pixel_values: Optional[torch.Tensor] = None,
# pixel_values_videos: Optional[torch.FloatTensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
# video_grid_thw: Optional[torch.LongTensor] = None,
pooling_mask: Optional[torch.LongTensor] = None,
**kwargs
) -> torch.Tensor:
if inputs_embeds is None:
inputs_embeds = self.base.model.embed_tokens(input_ids)
if pixel_values is not None:
pixel_values = pixel_values.type(self.base.visual.get_dtype())
image_embeds = self.base.visual(pixel_values, grid_thw=image_grid_thw).to(inputs_embeds.device)
image_mask = input_ids == self.base.config.image_token_id
inputs_embeds[image_mask] = image_embeds
# if pixel_values_videos is not None:
# pixel_values_videos = pixel_values_videos.type(self.base.visual.get_dtype())
# video_embeds = self.base.visual(pixel_values_videos, grid_thw=video_grid_thw).to(inputs_embeds.device)
# video_mask = input_ids == self.base.config.video_token_id
# inputs_embeds[video_mask] = video_embeds
if attention_mask is not None:
attention_mask = attention_mask.to(inputs_embeds.device)
outputs = self.base.model(
input_ids=None,
position_ids=position_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
)
pooling_mask = attention_mask if pooling_mask is None else pooling_mask
left_padding = (pooling_mask[:, -1].sum() == pooling_mask.shape[0]) # TODO
if left_padding:
embeddings = outputs.last_hidden_state[:, -1]
else:
sequence_lengths = pooling_mask.sum(dim=1) - 1
batch_size = outputs.last_hidden_state.shape[0]
embeddings = outputs.last_hidden_state[torch.arange(
batch_size, device=outputs.last_hidden_state.device
), sequence_lengths]
if self.normalize:
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
return embeddings.contiguous()
def embed(self, texts: list[str], images: list[Image.Image], is_query=True, instruction=None, **kwargs):
self.base.to(self.device)
# Inputs must be batched
input_texts, input_images = list(), list()
for t, i in zip(texts, images):
if not is_query or instruction is None:
instruction = self.defualt_instruction
input_str = ''
if i is None:
input_images = None # All examples in the same batch are consistent
else:
input_str += '<|vision_start|><|image_pad|><|vision_end|>'
i = fetch_image(i)
input_images.append(i)
if t is not None:
input_str += t
msg = f'<|im_start|>system\n{instruction}<|im_end|>\n<|im_start|>user\n{input_str}<|im_end|>\n<|im_start|>assistant\n<|endoftext|>'
input_texts.append(msg)
inputs = self.processor(
text=input_texts,
images=input_images,
padding=True,
truncation=True,
max_length=self.max_length,
return_tensors='pt'
)
inputs = {k: v.to(self.device) for k, v in inputs.items()} # TODO
with torch.no_grad():
embeddings = self.forward(**inputs)
return embeddings
def encode(self, sentences: list[str], *, prompt_name=None, **kwargs):
return self.get_fused_embeddings(texts=sentences, prompt_name=prompt_name, **kwargs)
def encode_queries(self, queries: List[str], **kwargs):
embeddings = self.encode(queries, **kwargs)
return embeddings
def encode_corpus(self, corpus: List[Dict[str, str]], **kwargs):
if type(corpus) is dict:
sentences = [
(corpus["title"][i] + self.sep + corpus["text"][i]).strip()
if "title" in corpus
else corpus["text"][i].strip()
for i in range(len(corpus["text"]))
]
else:
sentences = [
(doc["title"] + self.sep + doc["text"]).strip() if "title" in doc else doc["text"].strip()
for doc in corpus
]
embeddings = self.encode(sentences, is_query=False, **kwargs)
return embeddings
def get_image_embeddings(self, images: list[Image.Image] | DataLoader, **kwargs):
return self.get_fused_embeddings(images=images, **kwargs)
def get_text_embeddings(self, texts: list[str], **kwargs):
return self.get_fused_embeddings(texts=texts, **kwargs)
def get_fused_embeddings(self, texts: list[str] = None, images: list[Image.Image] | DataLoader = None, **kwargs):
if isinstance(images, DataLoader):
image_loader = images
batch_size = image_loader.batch_size
image_loader.dataset.transform = None
else:
batch_size = kwargs.pop('batch_size', 32)
if images is None:
image_loader = None
else:
image_loader = DataLoader(
images,
batch_size=batch_size,
shuffle=False,
collate_fn=custom_collate_fn,
num_workers=min(math.floor(os.cpu_count() / 2), 8),
)
if texts is None:
assert image_loader is not None
n_batch = len(image_loader)
else:
n_batch = len(texts) // batch_size + int(len(texts) % batch_size > 0)
image_loader = image_loader or [None] * n_batch
all_embeddings = list()
none_batch = [None] * batch_size
show_progress_bar = kwargs.pop('show_progress_bar', True)
pbar = tqdm(total=n_batch, disable=not show_progress_bar, mininterval=1, miniters=10, desc='encode')
for n, img_batch in zip(range(0, n_batch * batch_size, batch_size), image_loader):
text_batch = none_batch if texts is None else texts[n: n+batch_size]
img_batch = none_batch if img_batch is None else img_batch
embeddings = self.embed(texts=text_batch, images=img_batch, **kwargs)
pbar.update(1)
all_embeddings.append(embeddings.cpu())
pbar.close()
all_embeddings = torch.cat(all_embeddings, dim=0)
return all_embeddings
def custom_collate_fn(batch):
return batch
### Copied from qwen_vl_utils.vision_process.py
import base64
from io import BytesIO
import requests
IMAGE_FACTOR = 28
MIN_PIXELS = 4 * 28 * 28
MAX_PIXELS = 16384 * 28 * 28
MAX_RATIO = 200
def round_by_factor(number: int, factor: int) -> int:
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
return round(number / factor) * factor
def ceil_by_factor(number: int, factor: int) -> int:
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
return math.ceil(number / factor) * factor
def floor_by_factor(number: int, factor: int) -> int:
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
return math.floor(number / factor) * factor
def smart_resize(
height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS
) -> tuple[int, int]:
"""
Rescales the image so that the following conditions are met:
1. Both dimensions (height and width) are divisible by 'factor'.
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
3. The aspect ratio of the image is maintained as closely as possible.
"""
h_bar = max(factor, round_by_factor(height, factor))
w_bar = max(factor, round_by_factor(width, factor))
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = floor_by_factor(height / beta, factor)
w_bar = floor_by_factor(width / beta, factor)
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = ceil_by_factor(height * beta, factor)
w_bar = ceil_by_factor(width * beta, factor)
if max(h_bar, w_bar) / min(h_bar, w_bar) > MAX_RATIO:
logging.warning(
f"Absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(h_bar, w_bar) / min(h_bar, w_bar)}"
)
if h_bar > w_bar:
h_bar = w_bar * MAX_RATIO
else:
w_bar = h_bar * MAX_RATIO
return h_bar, w_bar
def fetch_image(image: str | Image.Image, size_factor: int = IMAGE_FACTOR) -> Image.Image:
image_obj = None
if isinstance(image, Image.Image):
image_obj = image
elif image.startswith("http://") or image.startswith("https://"):
image_obj = Image.open(requests.get(image, stream=True).raw)
elif image.startswith("file://"):
image_obj = Image.open(image[7:])
elif image.startswith("data:image"):
if "base64," in image:
_, base64_data = image.split("base64,", 1)
data = base64.b64decode(base64_data)
image_obj = Image.open(BytesIO(data))
else:
image_obj = Image.open(image)
if image_obj is None:
raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}")
image = image_obj.convert("RGB")
## resize
# if "resized_height" in ele and "resized_width" in ele:
# resized_height, resized_width = smart_resize(
# ele["resized_height"],
# ele["resized_width"],
# factor=size_factor,
# )
# else:
width, height = image.size
# min_pixels = ele.get("min_pixels", MIN_PIXELS)
# max_pixels = ele.get("max_pixels", MAX_PIXELS)
resized_height, resized_width = smart_resize(
height,
width,
factor=size_factor,
min_pixels=MIN_PIXELS,
max_pixels=MAX_PIXELS,
)
image = image.resize((resized_width, resized_height))
return image
###
if __name__ == '__main__':
texts = [
"What kind of car is this?",
"The Tesla Cybertruck is a battery electric pickup truck built by Tesla, Inc. since 2023."
]
images = [
# 'https://en.wikipedia.org/wiki/File:Tesla_Cybertruck_damaged_window.jpg',
'/nas-alinlp/linzhang.zx/gme_space/assets/Tesla_Cybertruck_damaged_window.jpg',
# 'https://en.wikipedia.org/wiki/File:2024_Tesla_Cybertruck_Foundation_Series,_front_left_(Greenwich).jpg',
'/nas-alinlp/linzhang.zx/gme_space/assets/2024_Tesla_Cybertruck_Foundation_Series,_front_left_(Greenwich).jpg',
]
gme = GmeQwen2VL("/nas-alinlp/linzhang.zx/gme_space/gme-Qwen2-VL-2B-instruct")
# Single-modal embedding
e_text = gme.get_text_embeddings(texts=texts)
e_image = gme.get_image_embeddings(images=images)
print((e_text * e_image).sum(-1))
## tensor([0.2281, 0.6001], dtype=torch.float16)
# How to set embedding instruction
e_query = gme.get_text_embeddings(texts=texts, instruction='Find an image that matches the given text.')
# If is_query=False, we always use the default instruction.
e_corpus = gme.get_image_embeddings(images=images, is_query=False)
print((e_query * e_corpus).sum(-1))
## tensor([0.2433, 0.7051], dtype=torch.float16)
# Fused-modal embedding
e_fused = gme.get_fused_embeddings(texts=texts, images=images)
print((e_fused[0] * e_fused[1]).sum())
## tensor(0.6108, dtype=torch.float16)