|
--- |
|
library_name: keras |
|
license: mit |
|
--- |
|
|
|
## Model description |
|
|
|
### the hepler function |
|
(requirements: `numpy Pillow`) |
|
```python |
|
import numpy as np |
|
from PIL import Image |
|
|
|
def predict(model, img): |
|
pil_image = img |
|
pil_image = pil_image.resize((64, 64)) |
|
|
|
image_array = np.array(pil_image) / 255.0 |
|
|
|
image_array = np.expand_dims(image_array, axis=0) |
|
|
|
input_shape = (64, 64, pil_image.mode == 'RGB' and 3 or 1) |
|
|
|
decimal_prediction = model.predict(image_array)[0][0] |
|
return decimal_prediction |
|
``` |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
|
|
| Hyperparameters | Value | |
|
| :-- | :-- | |
|
| name | Adam | |
|
| weight_decay | None | |
|
| clipnorm | None | |
|
| global_clipnorm | None | |
|
| clipvalue | None | |
|
| use_ema | False | |
|
| ema_momentum | 0.99 | |
|
| ema_overwrite_frequency | None | |
|
| jit_compile | False | |
|
| is_legacy_optimizer | False | |
|
| learning_rate | 0.0010000000474974513 | |
|
| beta_1 | 0.9 | |
|
| beta_2 | 0.999 | |
|
| epsilon | 1e-07 | |
|
| amsgrad | False | |
|
| training_precision | float32 | |
|
|
|
|
|
## Model Plot |
|
|
|
<details> |
|
<summary>View Model Plot</summary> |
|
|
|
![Model Image](./model.png) |
|
|
|
</details> |