swinv2-finetuned-ve-Ub200

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5977
  • Accuracy: 0.4706

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.92 6 7.9891 0.0980
No log 2.0 13 7.4848 0.0980
No log 2.92 19 6.2378 0.0980
No log 4.0 26 4.8900 0.0980
No log 4.92 32 3.8155 0.0980
No log 6.0 39 2.7342 0.0980
No log 6.92 45 2.0612 0.0980
No log 8.0 52 1.5977 0.4706
No log 8.92 58 1.3671 0.4706
No log 10.0 65 1.2122 0.4706
No log 10.92 71 1.1823 0.4706
No log 12.0 78 1.1835 0.4706
No log 12.92 84 1.1838 0.4706
No log 14.0 91 1.1778 0.4706
No log 14.92 97 1.1769 0.4706
3.2267 16.0 104 1.1762 0.4706
3.2267 16.92 110 1.1758 0.4706
3.2267 18.0 117 1.1770 0.4706
3.2267 18.46 120 1.1771 0.4706

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
16
Safetensors
Model size
27.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Augusto777/swinv2-finetuned-ve-Ub200

Finetuned
(78)
this model

Evaluation results