Augusto777's picture
End of training
d80da03 verified
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-finetuned-ve-Ub200
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.47058823529411764

swinv2-finetuned-ve-Ub200

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5977
  • Accuracy: 0.4706

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.92 6 7.9891 0.0980
No log 2.0 13 7.4848 0.0980
No log 2.92 19 6.2378 0.0980
No log 4.0 26 4.8900 0.0980
No log 4.92 32 3.8155 0.0980
No log 6.0 39 2.7342 0.0980
No log 6.92 45 2.0612 0.0980
No log 8.0 52 1.5977 0.4706
No log 8.92 58 1.3671 0.4706
No log 10.0 65 1.2122 0.4706
No log 10.92 71 1.1823 0.4706
No log 12.0 78 1.1835 0.4706
No log 12.92 84 1.1838 0.4706
No log 14.0 91 1.1778 0.4706
No log 14.92 97 1.1769 0.4706
3.2267 16.0 104 1.1762 0.4706
3.2267 16.92 110 1.1758 0.4706
3.2267 18.0 117 1.1770 0.4706
3.2267 18.46 120 1.1771 0.4706

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0